
Week 6: Markov chains

Ranking nodes in a network

Popular algorithms to rank pages in a web search (e.g., Google’s PageRank) are stochastic.
They are typically based on the following process: consider a web surfer that visits a website and
clicks on one of its links at random; now suppose this process is repeated forever. What fraction
of time will the surfer spend on a given page? This answer to this question can then be used to
rank that page. This idea is not, however, restricted to the website ranking and can be used to
understand the structure of networks in different settings. For instance, this algorithm can be used
to extract connectivity information from a social graph (known as sociograms in sociometry). Say
we ask a student to direct us to a randomly selected friend. We then go to this friend and repeat the
process, being directed to another student. This is no different from the random web surfer model.
Repeating this process forever allows us to infer the degree of connectivity of each student in the
class from the average number of visits to each of them. As futile as this may seem, it is far from
a pointless exercise. When marketing products, for example, it is worthwhile to concentrate efforts
on the individuals that are most connected as they are likely to influence more people. The crucial
insight here is that the network individuals belong to carries information that the individuals in
isolation do not. For this homework, we will use a collaboration matrix that you can download
from the course’s website.

Let us now formalize the model we discussed using the language of graphs. Consider a network
with J individuals. We describe this network by a directed graph G = (V, E), where V = {1, . . . , J}
denotes the set of nodes and E ⊆ V × V denotes the set of edges. An edge e = (i, j) is an ordered
pair representing a link from node i ∈ V to node j ∈ V. Also define N (i) to be the neighborhood
of the i-th node, i.e., all nodes j ∈ V to which i is pointing. Explicitly, N (i) = {j : (i, j) ∈ E}.
Let Di = |N (i)| be the number of nodes in the neighborhood of i. This is often referred to as the
degree of i. Similarly, define the incoming neighborhood of i as the set of nodes that point to i,
i.e., N−1(i) = {j : (j, i) ∈ E}.

Suppose now that an outside agent approaches an arbitrary node A0 at time n = 0 and starts
the random neighbor jumping process we described earlier. Hence, if the agent is at node An

at time n, it randomly and equiprobably choose a node in its neighborhood N (An) to visit at
time n + 1. Thus, the probability Pij of the agent transitioning from node i to node j is

Pij = P [An+1 = j | An = i] =
1

Di
, for j ∈ N (i). (1)

Recall that Di is the number of nodes in the neighborhood of node i. The movement of the agent
through the nodes in the graphs is called an equiprobable random walk on the graph.

Finally, we let the fraction of time the agent spends visiting node i ∈ V be the i-th node’s rank.
To express this quantity mathematically, define the indicator function I [An = i] to be one if the
agent visits node i at time n and 0 otherwise. The rank ri of node i is then given by

ri(A0) = lim
n→∞

1

n

n∑
m=1

I(An = i). (2)

1

Notice that ri may depend on the initial node A0.

A Markov chain model. The stochastic process describing the nodes the agent visits AN is
a Markov chain (MC). Explain why. Moreover, give conditions for the following statements to be
true:

1. State i of this MC, i.e., visits of the agent to node i, is transient.

2. All states of this MC are transient.

3. All the states of this MC are recurrent.

4. All states of this MC are aperiodic.

5. All states are positive recurrent.

6. All states are ergodic.

7. The MC is irreducible.

Some of the above statements may always be true whereas others may never be true.
Before proceeding, notice that the agent in this homework behaves differently than the one we

covered in class. Indeed, the ranking problem we considered in class assumed that the random walk
was recurrent, aperiodic, ergodic, and irreducible. For the rest of this homework, you can assume
that all states in this random walk are recurrent, aperiodic, and ergodic, but you cannot assume
that the MC is irreducible unless otherwise explicitly stated. If you wish, we are going to study
the extent to which we can deal with lack of irreducibility. So before you continue, make sure you
understand correctly the graph aspects of reducible MCs.

B Random walk implementation. We are now ready to build an algorithm to compute ri(A0).
We start with a randomly chosen node A0 and jump equiprobably to any of its neighboring
nodes j ∈ N (i). The probability of selecting any of this nodes is Pij = 1/Di. We repeat this
process a large number of times N and keep track of the number of visits to each node. The
rank ri(A0) is then approximated as the ratio between the number of visits to node i and the total
number of visits N , i.e.,

ri(A0) ≈
1

N

N∑
n=1

I (An = i) . (3)

Write a MATLAB script that implements this random walk on the graph underlying the collabo-
ration matrix available on the course website. Use this code to compute the rankings as per (3)
for A0 = 1. What condition needs to be satisfied for the ranks in (2) to be independent of the
initial state A0?

If this condition is not satisfied, modify the algorithm by introducing an artificial node that is
connected to all members of the graph. You can think of this node as the professor who knows—or
should know—all students. Call these modified ranks ri and approximate them as

ri ≈
1

N

N∑
n=1

I (An = i) (4)

The definitions in (3) and (4) look the same, but recall that the random walk occurs in different
graphs. Compute the modified ranks.

2

Disclaimer: convergence of this algorithm is very slow. Rough numerical approximations are
acceptable as the answer to this question.

C Probability update. Although the implementation in part B works, we can obtain a faster
version by exploiting the fact that the random visits can be modeled as a MC. Let pi(n) = P [An = i]
denote the probability that the agent is at node i at time n. The probability pj(n + 1) can be
expressed in terms of the probabilities at time n of those nodes that can transition into j. Explicitly,
the memoryless property allows us to write pj(n+ 1) as a function of the pi(n) for i ∈ N−1(j), i.e.,
the probabilities of the nodes that can transition into j. Write this probability update expression.

Using the vector p(n) =
[
p1(n) · · · pJ(n)

]T
, write this update equation in matrix form.

D Probability update implementation. An important property of some MCs is the ex-
istence of limit probabilities limn→∞ pi(n). State conditions under they exist. Still, these limit
probabilities might depend on the initial probability distribution p(0). Choosing this vector such
that all the initial probability is on A0, i.e., pA0(0) = 1 and pi(0) = 0 for all i 6= A0, the i-th node
rank can be computed as

ri(A0) = lim
n→∞

pi(n). (5)

Explain why this is the case. Write a MATLAB script that computes ranks using the property
stated in (5) (recall the update you derived in part C) and evaluate the ranks for A0 = 1. The
ranks in (4) obtained from the modified graph can be computed as the limit

ri = lim
n→∞

pi(n) (6)

for any initial probability distribution. Explain why this is the case. Modify your function to
compute the ranks ri and rank the nodes once more. A convenient choice of initial probability
distribution is p(0) = (1/J)1.

E Recast as a system of linear equations. Focus now only on the modified graph containing
the fully connected node. As you have already seen and explained, ranks in this case are independent
of the initial state A0. Use your knowledge of MCs to recast the node ranking problem as the
solution of a system of linear equations. Write a MATLAB script to solve this system and compare
with the results of parts B and D.

F Recast as an eigenvalue problem. Focus again only on the modified graph containing
the fully connected node. Use your knowledge of MCs to recast the node ranking problem as an
eigenvalue problem. Write a MATLAB script that computes the desired eigenvector and compare
with the results of parts B, D, and E.

Hint: You can use the MATLAB function eig to solve eigenvalue problems. Use help eig to
find out more.

G Compare implementations. All four methods yield the same results, but have specific
advantages that make them suitable for different applications. Once again focusing on the modified
graph containing the fully connected node, discuss these advantages. Most of them were touted in
class. But there is a particular advantage of the method in part D that we did not discuss and you
should now be able to appreciate.

3

