
Week 6: Markov chains

Ranking of nodes in graphs

Solutions

A Markov chain model. The stochastic process AN describing the agent’s visits to nodes of
the graph is an MC because it is memoryless—the probability of visiting any node depends only on
the current node—and time-invariant—the probability of jumping from node i to node j does not
depend on the time n. Both of these observations stem directly from the transition probability Pij

in (1).
As for the statements, I am giving an extensive explanation of each case below. This is for your

benefit. It does not mean you are expected to delve into such details in your answers: a definition
followed by an intuition is enough.

1. State i of this MC, i.e., visits of the agent to node i, is transient: since the MC is finite, the
only way for a state i to be transient is if some node j 6= i can be reached from i through a path
of nonzero probabilities, but not vice versa. This could happen if the incoming neighborhood
of node i is empty or if the incoming neighborhood of ALL nodes in its incoming neighborhood
have empty incoming neighborhoods and so on.

However, the collaboration matrix in this homework is symmetric, i.e., if student i collabo-
rated with student j, then so did student j with student i. Hence, it induces an undirected
graph. Therefore, every path is “bidirectional” and none of the states are transient.

2. All states of this MC are transient: In a finite MC, it is impossible for ALL states to be
transient. We prove that by contradiction. Suppose all J states of a MC are transient. Now
pick any node i0 ∈ V. Since i0 is transient, there exist a path of nonzero probability between i0
and another node i1 ∈ V such that there is no path of nonzero probability from i1 back to i0.
Moreover, since i1 is also transient, there must exist a path of nonzero probability between i1
and another node i2 ∈ V, but no such path from i2 back to i1. If we repeat this process J
times, however, we will obtain a path containing J + 1 nodes. Since the underlying graph of
the MC only has J nodes, one of them must appear twice in the path. Call this node i?. We
have therefore constructed a path of nonzero probability from i? back to i?, which contradicts
the assumption that it is transient.

3. All the states of this MC are recurrent: We know that some states of this MC must be
recurrent. But for all states to be recurrent, there must exist a path of nonzero probability
from any state i ∈ V to any state j ∈ V. In graph-theoretic terms, every component (i.e., class
of states) of the underlying graph must be a strongly connected component. For instance,
this is the case when the underlying graph of the MC is undirected (as in the collaboration
matrix).

4. All states of this MC are aperiodic: Recall that periodicity is a class property. In a directed
graph, this property is related to the existence of cycles. For instance, if a class is formed

1

by a single cycle, then that class is periodic. If a class is formed by interconnected cycles of
the same length (or more generally, if the lengths of the cycles are not co-primes), then it is
again periodic.

In the case of the collaboration matrix, which is an undirected graph with no self-loops (unless
the class consists of only one state), the number of steps it takes to return to a given state is
necessarily a multiple of two (as in the random walk on a line). Therefore, suffices for a class
to have a loop of odd length for that class to be aperiodic (why?).

5. All states are positive recurrent: Once again, note that positive recurrence is a class property.
Do not confuse positive recurrence of all of the states with positive recurrence of the MC, which
additionally requires irreducibility. In a finite MC, all recurrent classes are positive recurrent,
i.e., the expected return time to any node is finite. Showing this from first principles is
not easy. But we can argue through the limiting distribution πC . Indeed, since the class is
finite, we can write the eigenvalue problem πC = P T

C πC subject to πT
C 1 = 1, where PC is

the transition matrix of class C. Since PC is a finite matrix with finite entries, this problem
has a solution finite solution. Since the class has a limiting distribution, it must be positive
recurrent. Moreover, the stationary distribution is related to the expected time of return by

πi =
1

E[Ti]
,

where πi is the limit probability for node i and E[Ti] is the expected time of return (the proof
is a cute application of the law of large numbers, you can email your TAs about it if you’re
interested). So if πC is finite, then so are the expected return time of all states in C.

6. All states are ergodic: Again, ergodicity is a class property: do not confuse ergodicity of all
of the states with ergodicity of the MC, which requires irreducibility. A state is ergodic if
and only if it is aperiodic and positive recurrent. Suffices then to put together items 3–5.
For the undirected graph case, suffices for a class to be composed of a single state or have an
odd-length loop to be ergodic.

7. The MC is irreducible: To be irreducible the underlying graph of the MC must be strongly
connected (form a single strongly connected component). In the case of the collaboration
matrix, this means that there must not be singletons (students alone) or disjoint classes of
friendship.

B Random walk implementation. You’ll find the MATLAB script that implements the
random walk method of rank computation for the reducible collaboration graph below.

1 % Delete all variables and close figures
2 clear all
3 close all
4

5 % Load collaboration matrix
6 collaboration matrix;
7

8 J = size(graph,1); % Number of states
9 D = sum(graph); % Degree of each node of the graph

10 N = 1e6; % Length of simulation
11 A0 = 1; % Initial state
12 % A0 = 6; % Initial state
13

14 % Random walk

2

15 number visits = zeros(J,1);
16 current state = A0;
17 for n = 1:N
18 number visits(current state) = number visits(current state) + 1;
19 neighborhood = find(graph(current state,:));
20 current state = neighborhood(randi(D(current state)));
21 end
22

23 % Compute ranks
24 ranks = number visits/N;
25

26 % Display ranks
27 figure();
28 bar(1:J, ranks);
29 xlabel('Node');
30 ylabel('Rank');
31 xlim([0.5 J+0.5]);
32 grid;
33

34

35 %%% Export figure %%%
36 set(gcf,'Color','w');
37 export fig -q101 -pdf HW6 B1-1.pdf
38 %%%

Results are depicted in Figure 1. Notice that we can investigate the disjoint classes by inspecting
Figure 1. Indeed, states that receive zero rank (explicitly, states 6, 11, 16, 28, and 33), i.e., states
that were never visited, belong to a different class than state A0 = 1. If we change the initial state
to A0 = 6, for instance, we obtain Figure 2. Immediately, we can see that nodes 6, 16, and 33 form
a component. Performing the same for states 11 and 28 reveal that they are singletons.

To include the “professor” (fully connected node), we simply augment the graph as in the
following script and repeat the random walk experiment.

1 % Delete all variables and close figures
2 clear all
3 close all
4

5 % Load collaboration matrix
6 collaboration matrix;
7

8 % Include fully connected node to graph (node "J+1")
9 graph = [graph ones(size(graph,1),1) ; ones(1,size(graph,1)) 0];

10

11 J = size(graph,1); % Number of states
12 D = sum(graph); % Degree of each node of the graph
13 N = 1e6; % Length of simulation
14 A0 = 1; % Initial state
15

16 % Random walk
17 number visits = zeros(J,1);
18 current state = A0;
19 for n = 1:N
20 number visits(current state) = number visits(current state) + 1;
21 neighborhood = find(graph(current state,:));
22 current state = neighborhood(randi(D(current state)));
23 end
24

25 % Compute ranks
26 ranks = number visits/N;
27

28 % Display ranks
29 figure();

3

30 bar(1:J, ranks);
31 xlabel('Node');
32 ylabel('Rank');
33 xlim([0.5 J-1+0.5]);
34 grid;
35

36

37 %%% Export figure %%%
38 set(gcf,'Color','w');
39 export fig -q101 -pdf HW6 B2.pdf
40 %%%

The results are shown in Figure 3. Notice that we only show the ranks of the original nodes and
ignore the fully connected node. Indeed, since this node is connected to all nodes it has an artificially
high rank that distorts the plot. Moreover, observe that since the graph is now irreducible, there
is only one class and all nodes have non-zero rank.

C Probability update. Following slides 19 and 20, in ranking nodes in graphs, we can write
the probability pi(n+ 1) as

pi(n+ 1) =
∑

j∈N−1(i)

P [An+1 = i | An = j]P [An = j] =
∑

j∈N−1(i)

Pjipj(n).

In matrix form this becomes
p(n+ 1) = P Tp(n),

where P is the transition probability matrix and p(n) is the vector that collects the probabilities
of being in each state.

D Probability update implementation. The limit probabilities limn→∞ pi(n) exist when
the MC is positive recurrent and aperiodic (if it is periodic the probability oscillates). Thus, this
MC has a limit distribution (slides 77 to 82 of markov chains). Moreover, even if the MC is
reducible, it is always ergodic within each of its classes. Thus, the limit distribution within class C
describes the fraction of time spent on the states of C conditioned on the fact that the initial state
is in C. Therefore, the limit probabilities can be used in this case to compute the rank ri(A0) using
the following MATLAB script:

1 % Delete all variables and close figures
2 clear all
3 close all
4

5 % Load collaboration matrix
6 collaboration matrix;
7

8 P = random walk;
9 J = size(graph,1); % Number of states

10 D = sum(graph); % Degree of each node of the graph
11 N = 100; % Length of simulation
12 A0 = 1; % Initial state
13

14 % Probability update
15 p = zeros(J,1);
16 p(A0) = 1;
17

18 % Also known as p = (P')ˆN*p...
19 for n = 1:N
20 p = P'*p;

4

21 end
22

23 % Compute ranks
24 ranks = p;
25

26 % Display ranks
27 figure();
28 bar(1:J, ranks);
29 xlabel('Node');
30 ylabel('Rank');
31 xlim([0.5 J+0.5]);
32 grid;
33

34

35 %%% Export figure %%%
36 set(gcf,'Color','w');
37 export fig -q101 -pdf HW6 D1.pdf
38 %%%

The results can be found in Figure 4.
Now, for the limit probabilities to be independent of initial distribution, the MC must addi-

tionally be irreducible (and hence an ergodic MC, refer to slide 60 of markov chains). Recall that
adding the fully connected node makes this MC irreducible and we can compute the modified ranks
using the MATLAB script below.

1 % Delete all variables and close figures
2 clear all
3 close all
4

5 % Load collaboration matrix
6 collaboration matrix;
7

8 % Include fully connected node to graph (node "J+1")
9 graph = [graph ones(size(graph,1),1) ; ones(1,size(graph,1)) 0];

10

11 J = size(graph,1); % Number of states
12 D = sum(graph); % Node degrees
13 N = 100; % Length of simulation
14

15 P = zeros(J,J);
16 for n = 1:J
17 if D(n) > 0
18 P(n,:) = graph(n,:) / D(n);
19 end
20 end
21

22 % Probability update
23 p = ones(J,1)/J;
24

25 % Also known as p = (P')ˆN*p...
26 for n = 1:N
27 p = P'*p;
28 end
29

30 % Compute ranks
31 ranks = p;
32

33 % Display ranks
34 figure();
35 bar(1:J, ranks);
36 xlabel('Node');
37 ylabel('Rank');
38 xlim([0.5 J-1+0.5]);

5

39 grid;
40

41

42 %%% Export figure %%%
43 set(gcf,'Color','w');
44 export fig -q101 -pdf HW6 D2.pdf
45 %%%

Results are shown in Figure 5.

E Recast as a system of linear equations. Focusing on the modified, irreducible graph, we
can compute the node ranks by finding the limit distribution of the MC. To do so, we can follow
the derivation on slide 64 of markov chains and solve the following system of linear equations:[

π
1

]
=

[
P T

1T

]
π (1)

To solve this system in MATLAB, notice that (1) can also be written as the homogeneous
system (

I − P T
)
π = 0

1Tπ = 1

which implies that π is in the null space of
(
I − P T

)
. We can use this property to find a solution

of (1) using the following MATLAB script:

1 % Delete all variables and close figures
2 clear all
3 close all
4

5 % Load collaboration matrix
6 collaboration matrix;
7

8 % Include fully connected node to graph (node "J+1")
9 graph = [graph ones(size(graph,1),1) ; ones(1,size(graph,1)) 0];

10

11 J = size(graph,1); % Number of states
12 D = sum(graph); % Node degrees
13

14 P = zeros(J,J);
15 for n = 1:J
16 if D(n) > 0
17 P(n,:) = graph(n,:) / D(n);
18 end
19 end
20

21 % Compute ranks
22 null vector = null(eye(J) - P');
23 pi = null vector/sum(null vector);
24

25 % Display ranks
26 figure();
27 bar(1:J, pi);
28 xlabel('Node');
29 ylabel('Limit probability');
30 xlim([0.5 J-1+0.5]);
31 grid;
32

33

6

34 %%% Export figure %%%
35 set(gcf,'Color','w');
36 export fig -q101 -pdf HW6 E.pdf
37 %%%

Results are shown in Figure 6.

F Recast as an eigenvalue problem. Notice that the top part of (1) reads

π = P Tπ. (2)

In other words, π is related to the eigenvector of P T corresponding to the eigenvalue one (refer
to slide 18 of ranking nodes in graphs). This eigenvector can be computed in MATLAB using the
following script. Be careful: MATLAB returns eigenvectors normalized to have unit norm. Hence,
to obtain π you must normalize the returned eigenvector to be a probability distribution.

1 % Delete all variables and close figures
2 clear all
3 close all
4

5 % Load collaboration matrix
6 collaboration matrix;
7

8 % Include fully connected node to graph (node "J+1")
9 graph = [graph ones(size(graph,1),1) ; ones(1,size(graph,1)) 0];

10

11 J = size(graph,1); % Number of states
12 D = sum(graph); % Node degrees
13

14 P = zeros(J,J);
15 for n = 1:J
16 if D(n) > 0
17 P(n,:) = graph(n,:) / D(n);
18 end
19 end
20

21 % Compute ranks
22 [V,D] = eig(P');
23 eigenvector = V(:,1);
24 pi = eigenvector/sum(eigenvector);
25

26 % Display ranks
27 figure();
28 bar(1:J, pi);
29 xlabel('Node');
30 ylabel('Limit probability');
31 xlim([0.5 J-1+0.5]);
32 grid;
33

34

35 %%% Export figure %%%
36 set(gcf,'Color','w');
37 export fig -q101 -pdf HW6 F.pdf
38 %%%

Results are depicted in Figure 7.

G Compare implementations. (Refer to slides 18, 22–28 of ranking nodes in graphs.)

7

• Random walk : the main advantage of this approach is that it evaluates the ranks in a dis-
tributed fashion, i.e., each node can determine its own rank without the need for a central unit
to aggregate all the information. This method is therefore “secure,” as almost no information
is shared between nodes. For any node to compute its rank it needs only know how many
neighbors it has and how many time steps have passed (which can be easily done by token
passing).

• Probability update: using probability propagation has similar advantages to the random walk
method in that implementation can be distributed and there can be limited sharing of infor-
mation between nodes. However, its main advantage is that it converges to the true ranks
significantly faster than the random walk implementation (how fast it converges actually de-
pends on the graph). Indeed, observe that the ranks of all states are updated at each iteration,
unlike the random walk approach where only one node rank is updated at each step. More-
over, the updates can be halted at any iteration to provide an approximation of the ranks
of the nodes, in contrast to the system of linear equations or eigenvector approaches1. This
is particularly important for large MCs. Also notice that the algorithm reduces to a simple
matrix-vector multiplication, for which there exist very fast algorithms, both centralized and
distributed (especially if the matrix is sparse, i.e., has many zero elements, which is typically
the case with graphs). In fact, this is MATLAB’s specialty: it is designed to perform matrix
computations exceptionally fast.

• System of linear equations: this approach mitigates the slow convergence issue since it does
not (necessarily) depends on iteration. Nevertheless, all ranks must be computed centrally,
which compromises the privacy of the nodes. Moreover, for large networks, it may be impos-
sible to directly compute all ranks since even the matrix P alone may be too large to even
fit in memory. Again, methods do exist to address some of these issues (this is a whole area
of numerical methods), but they are beyond the scope of this course.

• Eigenvalue problem: this approach is very similar to the system of linear equations one and
therefore has similar advantages and disadvantages.

1This is not completely true. There exist iterative linear systems and eigenvalue problem solvers (e.g., Gauss-
Jacobi iterations and Lanczos algorithm), some of which MATLAB actually uses (although it makes it look like they
aren’t iterative by just spitting out an answer).

8

5 10 15 20 25 30 35

Node

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

R
a

n
k

Figure 1: Ranks evaluated using the random walk method for N = 106 iterations on the reducible
graph with initial state A0 = 1 (Part B).

5 10 15 20 25 30 35

Node

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

R
a

n
k

Figure 2: Ranks evaluated using the random walk method for N = 106 iterations on the reducible
graph with initial state A0 = 6 (Part B).

9

5 10 15 20 25 30 35

Node

0

0.01

0.02

0.03

0.04

0.05

0.06

R
a

n
k

Figure 3: Ranks evaluated using the random walk method for N = 106 iterations on the irreducible
graph with initial state A0 = 1 (Part B).

5 10 15 20 25 30 35

Node

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

R
a

n
k

Figure 4: Ranks evaluated using the probability update method for N = 100 iterations on the
reducible graph where the initial probability vector p(0) has all elements equal to zero except for
the first one, which is equal to one (Part D).

10

5 10 15 20 25 30 35

Node

0

0.01

0.02

0.03

0.04

0.05

0.06

R
a

n
k

Figure 5: Ranks evaluated using the probability update method for N = 100 iterations on the
irreducible graph where the initial probability vector p(0) = 1/J (Part D).

5 10 15 20 25 30 35

Node

0

0.01

0.02

0.03

0.04

0.05

0.06

L
im

it
 p

ro
b

a
b

ili
ty

Figure 6: Ranks evaluated using the linear system of equations method on the irreducible
graph (Part E).

11

5 10 15 20 25 30 35

Node

0

0.01

0.02

0.03

0.04

0.05

0.06

L
im

it
 p

ro
b

a
b

ili
ty

Figure 7: Ranks evaluated using the eigenvalue method on the irreducible graph (Part F).

12

