
Week 7: Continuous-time Markov chains

Poisson process

Our goal in this exercise is to model and study the arrival of commuters to a subway station
during the time interval (0, T ]. To that end, we divide the interval in n subintervals of duration h,
so that the i-th subinterval is ((i− 1)h, ih], for i = 1, . . . , n, and T = nh. For sufficiently small h,
we can assume that there will be at most one arrival in each subinterval and that the probability
of a single arrival occurring in that interval is λh. In other words, we assume that costumers do
not arrive simultaneously and that the probability of arrival is proportional to the length of the
interval. Formally, for Ni(h) be the number of costumers that arrive in the i-th subinterval of
duration h, we have

P [Ni(h) = 0] = 1− λh, P [Ni(h) = 1] = λh, and P [Ni(h) = k] = 0, for all k > 1. (1)

In principle, there is no reason to believe that the arrival of a customer in the i-th subinterval
is independent of the arrival of a customer in the j-th time interval. Nevertheless, if the number of
potential customers is very large, it is reasonable to assume that arrivals in different subintervals
are independent. At the very least, it is a good approximation. We can therefore write

P [Ni(h) = `,Nj(h) = k] = P [Ni(h) = k]P [Nj(h) = `] , for i 6= j and k, ` ∈ {0, 1}. (2)

Expressions (1) and (2) define the stochastic process of arrivals of passengers to the subway station.
Implicit in this definition is the assumption that T is sufficiently small so that the probability of a
customer arriving does not depend on time.

We are interested in using this model to analyze two metrics: (i) the number of customers

arriving by time 0 < t ≤ T , denoted N(t) =
∑bt/hc

i=1 Ni(h), for N(0) = 0, and (ii) the time T1
elapsed until the first customer arrives at the subway station. Notice from (1) that N(t) must
satisfy

P [N(t+ h)−N(t) = 1 | N(t)] = λh.

Also, observe that T1 is related to N(t) since it describes the time at which N(t) transitions from
zero to one. Hence,

T1 = min{t : N(t) = 1}.

You will show in what follows that for sufficiently small h, T1 is exponentially distributed with
parameter λ and N(t) is Poisson with parameter λt for all t ∈ (0, T ].

A Simulating N(t). Write a MATLAB function that simulates this arrival process. Use T =
10 minutes, λ = 1 customer per minute, and n = 103. Compare the histogram of N(T ) obtained
from 104 experiments with the pmf of a Poisson with parameter λT . Also compare the histogram
of N(T )/2 with the pmf of a Poisson with parameter λT/2.

B The distribution of N(t). The comparisons in part A should have yielded accurate fits.
Discuss why this is the case in light of the Poisson approximation of the binomial distribution you
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saw in Homework 2. Argue that it implies the pmf of N(t) is Poisson with parameter λt for all t,
i.e.,

P [N(t) = k] = e−λt
(λt)k

k!
. (3)

C Simulating T1. Using the function you wrote in part A, compute a histogram of T1 from 104

experiments. Compare it with the pdf of an exponential with parameter λ.

D The distribution of T1. You should have observed a good fit in part C. Using the fact that
the probability of having no arrivals by time t can be obtained from (3) as e−λt, argue that T1 is
exponentially distributed with parameter λ.

Hint: It is easier to think about the cdf for this exercise. Indeed, notice that we have T1 > t if
and only if there are no arrivals by time t, i.e., N(t) = 0.
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