Week 7: Continuous-time Markov chains
Poisson process
Solutions

A Simulating N(t). The MATLAB script to simulate the arrival process is given below.

function [ arrivals ] = passenger_arrivals( T, lambda, n )
$PASSENGER-ARRIVALS Simulate passenger arrivals using an approximate Poisson process

h = T/n; % Subinterval length

= lambdaxh; % Probability of arrival in each subinterval
% Generate arrivals by sampling from a Bernoulli (p)

arrivals = binornd(l, p, [n, 11);
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end

o
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We then run the experiments to compare with the Poisson pmf as follows.

1 % Delete all variables and close figures

2 clear all

3 close all

4

5 T = 10; % Observation interval (minutes)
6 lambda= 1; % Rate of passengers (passenger per minute)
7 n = 1000; % Number of subintervals

8 real = 1074; % Number of realizations

9

10 % Simulate arrivals

11 N_T = zeros(real,l);

12 N_T2 = zeros(real,l);

13 for 1 = l:real

14 arrivals = passenger_arrivals (T, lambda, n);
15 N_T (i) = sum(arrivals);

16 N_T2 (i) = sum(arrivals(l:n/2));

17 end

18

19 % Approximate pmfs

20 x = 0:30;

21 pmf_N_T = histc(N.T, x)/real;

22 pmf_ N_T2 = hist (N.T2,x)/real;

23

24

25 % Compare with Poisson pmfs

26 hl = figure();

27 stem(x, pmfN_.T, 'o', 'Linewidth', 2);

28 hold on;

29 plot(x, poisspdf(x, lambdaxT) ,'rx', 'Linewidth',6 2);
30 xlabel ('N(T)");

31 ylabel ('Probability');

32 grid;

33 legend('Simulated', 'Poisson pmf', 'Location', 'Best');
34




35 h2 = figure();

36 stem(x, pmf.N_.T2, 'o', 'Linewidth', 2);

37 hold on;

38 plot(x, poisspdf(x, lambda*T/2) ,'rx', 'Linewidth', 2);

39 xlabel ('N(T)");

40 vylabel ('Probability');

41 grid;

42 legend('Simulated', 'Poisson pmf', 'Location', 'Best');

43

44

45 $%% Export figure $85%%5%5%5%5%%%55555%55555%5%5555%55555%5555%%5%55%5%%%5%5%5%5%%5%5%5%%%
46 set (hl, '"Color','w');

47 export_fig(hl, '-gl0l1', '-pdf', '"HW7_Al.pdf');

48

49 set (h2, 'Color','w'");

50 export_fig(h2, '-gl01', '-pdf', "HW7_A2.pdf');
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Results are shown in Figures 1 and 2.

B The distribution of N(¢). Notice that N(T') can be written as
N(T) =) Ni(h)
i=1

and that each V;(h) is in fact a Bernoulli with probability of success Ah (recall that we assumed
that h is small enough). Since h = T'/n, we obtain that N(7') is a binomial random variable with
parameters (n,\T/n). We know that for large n this binomial will converge to a Poisson, which
explains why in part A the good fit of the Poisson pmf to the histograms.

To see how this implies that the distribution of N(¢) is Poisson for all ¢, define an approximate

version of N(t), namely
. t/h) Lnt/T]
N(t) =) Nih)= ) Ni(T/n), (1)
i=1 i=1

where we simply used the fact that h = T'/n to obtain the second equation. Two facts are important
about the approximation in (1): (i) N(t) is a binomial RV with parameters (|nt/T],\T/n) and
(ii) N(t) — N(t) as n — oo. Although (ii) is intuitive it can actually be made precise using a
continuity argument by noticing that N(t) = N(t) whenever t = kT/n, for k = 1,...,n. For our
purposes, however, these facts imply that

PIN() = K] = lim (L’WZTJ> (AT)’“ (1 B )\T)(Lnt/Tj—kr) )

n—o00 n n

Suffices now for us to show that this limit leads to the expression of the Poisson pmf. To do so,




start by rearranging (2) to read

P[N(t) = k] = lim (LmZTJ> <AT>’“ <1_ AT>untmm

n—o00 n n

. |nt/T]! (AT)E AT ([nt/T]=k)
A Bt/ T] — R (1 - >

n
B (AT)* . |nt/T|! AT (Lnt/T|=Fk)
k! nSoconk(|nt/T] — k)! n
_ Dk |nt/T! o (12T (Int/T]=k)
TR abse ik ([nt/T] — k) abee " m ’

where we used the fact that the limit of the product is the product of the limits as long as both limits
exist. Now, we can use a common trick to deal with limits and the floor function: simply notice
that for very large n, the difference between nt/T and |nt/T| is negligible. But most importantly,
it is always true that |nt/T| = nt/T — §, where 0 < § < 1. So we can write

(AT)* . (nt/T -0 (1 AT)(nt/TJk)
1m _— .

P[N(t) = k] = k! s nk(nt/T — 6 — k)! = nooo n

To evaluate the first limit, we start by doing the change of variable u = nt/T to obtain
()\T)k . (u—9)! ) AT (t/T=0=k)
VO =4 =T WT )R (u—6 — k)~ nioo o

. ()\t)k . (u— 5)! ) AT (nt)T—b6—k)
TR A u—s—h) A\ :

Now, it is ready that the first limit goes to one using the fact that ¢ is bounded and that
factorials grow much faster than polynomials (in fact, it grows much faster than exponentials!
limy, 00 2% /u! = 0). For the second limit, we can rearrange it to obtain an exponential as in

(nt/T—6—k)
piv =4 = O 1 (1 2T)

k! n—oc n

(R AT AT "
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which is indeed the expression for the Poisson pmf.

C Simulating 77. The MATLAB script to compute statistics of T} is as follows.

1 % Delete all variables and close figures
2 clear all
3 close all



T = 10; % Observation interval (minutes)
lambda= 1; % Rate of passengers (passenger per minute)
n = 1000; % Number of subintervals

real = 1074; Number of realizations
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10 % Simulate arrivals

11 T_.1 = zeros(real,l);

12 for 1 = l:real

13 arrivals = passenger._arrivals (T, lambda, n);
14 T_-1(i) = find(arrivals == 1, 1, 'first');
15 end

16

17 % Approximate pmfs

18 h = T/n;

19 pdf.T.1 = hist(T-1, 1l:n)/real/h;

20

21

22 % Compare with exponential RV

23 hl = figure();

24 plot((l:n)+h, pdf_.T_.1, 'Linewidth', 2);

25 hold on;

26 plot((l:n)+h, exppdf((l:n)+h, lambda) ,'--', 'Linewidth', 2);

27 xlabel ('"N(T)");

28 ylabel ('Probability'");

29 grid;

30 legend('Simulated', 'Poisson pmf', 'Location', 'Best');

31

32 h2 = figure();

33 plot((l:n)+h, cumsum(pdf_-T_-1xh), 'Linewidth', 2);

34 hold on;

35 plot((l:n)+h, expcdf((l:n)*h, lambda) ,'--', 'Linewidth',6 2);

36 xlabel ('N(T)"');

37 ylabel ('Probability');

38 grid;

39 legend('Simulated', 'Poisson pmf', 'Location', 'Best');

40

41

42

43 $%% Export figure $%5%%5%5%5%5%%5%5%555%%555555%5%55555%55555%5%555%%5%555%%%5%5%5%5%%5%5%5%%%
44 set (hl, 'Color','w'");

45 export_fig(hl, '-glO01', '-pdf', "HW7_.Cl.pdf');
46

47 set (h2, 'Color', 'w');

48 export_fig(h2,
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Figures 3 and 4 show a close fit with the exponential distribution.

D The distribution of 71. From part B, we have that P[N(t) = 0] = e~*. Notice, however,
that having no arrival by time ¢ is the same event as the first arrival occurring after time ¢. Hence,

PINt) =0 =P[T} >t] & P[T[1 <t]=1-P[N(t) =0 =1—e .

Observe that this is the cdf of an exponential random variable with parameter A\. Hence, T is
indeed exponentially distributed with parameter \.
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Figure 1: Comparison between the estimated pmf of N(T") obtained from 10* experiments and the
Poisson pmf with parameter AT (part A).
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Figure 2: Comparison between the estimated pmf of N(7/2) obtained from 10* experiments and
the Poisson pmf with parameter AT'/2 (part A).
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Figure 3: Comparison between the estimated pdf of 77 obtained from 10 experiments and the
exponential pdf with parameter A (part C).
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Figure 4: Comparison between the estimated cdf of T} obtained from 10* experiments and the
exponential c¢df with parameter A (part C).



