
Week 7: Continuous-time Markov chains

Poisson process

Solutions

A Simulating N(t). The MATLAB script to simulate the arrival process is given below.

1 function [ arrivals ] = passenger arrivals( T, lambda, n )
2 %PASSENGER ARRIVALS Simulate passenger arrivals using an approximate Poisson process
3

4 h = T/n; % Subinterval length
5 p = lambda*h; % Probability of arrival in each subinterval
6

7 % Generate arrivals by sampling from a Bernoulli(p)
8 arrivals = binornd(1, p, [n, 1]);
9

10 end

We then run the experiments to compare with the Poisson pmf as follows.

1 % Delete all variables and close figures
2 clear all
3 close all
4

5 T = 10; % Observation interval (minutes)
6 lambda= 1; % Rate of passengers (passenger per minute)
7 n = 1000; % Number of subintervals
8 real = 10ˆ4; % Number of realizations
9

10 % Simulate arrivals
11 N T = zeros(real,1);
12 N T2 = zeros(real,1);
13 for i = 1:real
14 arrivals = passenger arrivals(T, lambda, n);
15 N T(i) = sum(arrivals);
16 N T2(i) = sum(arrivals(1:n/2));
17 end
18

19 % Approximate pmfs
20 x = 0:30;
21 pmf N T = histc(N T, x)/real;
22 pmf N T2 = hist(N T2,x)/real;
23

24

25 % Compare with Poisson pmfs
26 h1 = figure();
27 stem(x, pmf N T, 'o', 'Linewidth', 2);
28 hold on;
29 plot(x, poisspdf(x, lambda*T) ,'rx', 'Linewidth', 2);
30 xlabel('N(T)');
31 ylabel('Probability');
32 grid;
33 legend('Simulated', 'Poisson pmf', 'Location', 'Best');
34
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35 h2 = figure();
36 stem(x, pmf N T2, 'o', 'Linewidth', 2);
37 hold on;
38 plot(x, poisspdf(x, lambda*T/2) ,'rx', 'Linewidth', 2);
39 xlabel('N(T)');
40 ylabel('Probability');
41 grid;
42 legend('Simulated', 'Poisson pmf', 'Location', 'Best');
43

44

45 %%% Export figure %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
46 set(h1,'Color','w');
47 export fig(h1, '-q101', '-pdf', 'HW7 A1.pdf');
48

49 set(h2,'Color','w');
50 export fig(h2, '-q101', '-pdf', 'HW7 A2.pdf');
51 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Results are shown in Figures 1 and 2.

B The distribution of N(t). Notice that N(T ) can be written as

N(T ) =
n∑
i=1

Ni(h)

and that each Ni(h) is in fact a Bernoulli with probability of success λh (recall that we assumed
that h is small enough). Since h = T/n, we obtain that N(T ) is a binomial random variable with
parameters (n, λT/n). We know that for large n this binomial will converge to a Poisson, which
explains why in part A the good fit of the Poisson pmf to the histograms.

To see how this implies that the distribution of N(t) is Poisson for all t, define an approximate
version of N(t), namely

Ñ(t) =

bt/hc∑
i=1

Ni(h) =

bnt/T c∑
i=1

Ni(T/n), (1)

where we simply used the fact that h = T/n to obtain the second equation. Two facts are important
about the approximation in (1): (i) Ñ(t) is a binomial RV with parameters (bnt/T c , λT/n) and
(ii) Ñ(t) → N(t) as n → ∞. Although (ii) is intuitive it can actually be made precise using a
continuity argument by noticing that N(t) = Ñ(t) whenever t = kT/n, for k = 1, . . . , n. For our
purposes, however, these facts imply that

P [N(t) = k] = lim
n→∞

(
bnt/T c
k

)(
λT

n

)k (
1− λT

n

)(bnt/T c−k)
(2)

Suffices now for us to show that this limit leads to the expression of the Poisson pmf. To do so,
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start by rearranging (2) to read

P [N(t) = k] = lim
n→∞

(
bnt/T c
k

)(
λT

n

)k (
1− λT

n

)(bnt/T c−k)

= lim
n→∞

bnt/T c!
k!(bnt/T c − k)!

(λT )k

nk

(
1− λT

n

)(bnt/T c−k)

=
(λT )k

k!
lim
n→∞

bnt/T c!
nk(bnt/T c − k)!

(
1− λT

n

)(bnt/T c−k)

=
(λT )k

k!
lim
n→∞

bnt/T c!
nk(bnt/T c − k)!

× lim
n→∞

(
1− λT

n

)(bnt/T c−k)
,

where we used the fact that the limit of the product is the product of the limits as long as both limits
exist. Now, we can use a common trick to deal with limits and the floor function: simply notice
that for very large n, the difference between nt/T and bnt/T c is negligible. But most importantly,
it is always true that bnt/T c = nt/T − δ, where 0 ≤ δ < 1. So we can write

P [N(t) = k] =
(λT )k

k!
lim
n→∞

(nt/T − δ)!
nk(nt/T − δ − k)!

× lim
n→∞

(
1− λT

n

)(nt/T−δ−k)
.

To evaluate the first limit, we start by doing the change of variable u = nt/T to obtain

P [N(t) = k] =
(λT )k

k!
lim
n→∞

(u− δ)!
(uT/t)k(u− δ − k)!

× lim
n→∞

(
1− λT

n

)(nt/T−δ−k)

=
(λt)k

k!
lim
n→∞

(u− δ)!
uk(u− δ − k)!

× lim
n→∞

(
1− λT

n

)(nt/T−δ−k)
.

Now, it is ready that the first limit goes to one using the fact that δ is bounded and that
factorials grow much faster than polynomials (in fact, it grows much faster than exponentials!
limu→∞ x

u/u! = 0). For the second limit, we can rearrange it to obtain an exponential as in

P [N(t) = k] =
(λt)k

k!
lim
n→∞

(
1− λT

n

)(nt/T−δ−k)

=
(λt)k

k!
lim
n→∞

[(
1− λT

n

) n
λT

]λT×nt/T−δ−k
n

=
(λt)k

k!

[
lim
n→∞

(
1− 1

n
λT

) n
λT

]λT× t
T

=
(λt)k

k!
e−λt,

which is indeed the expression for the Poisson pmf.

C Simulating T1. The MATLAB script to compute statistics of T1 is as follows.

1 % Delete all variables and close figures
2 clear all
3 close all
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4

5 T = 10; % Observation interval (minutes)
6 lambda= 1; % Rate of passengers (passenger per minute)
7 n = 1000; % Number of subintervals
8 real = 10ˆ4; % Number of realizations
9

10 % Simulate arrivals
11 T 1 = zeros(real,1);
12 for i = 1:real
13 arrivals = passenger arrivals(T, lambda, n);
14 T 1(i) = find(arrivals == 1, 1, 'first');
15 end
16

17 % Approximate pmfs
18 h = T/n;
19 pdf T 1 = hist(T 1, 1:n)/real/h;
20

21

22 % Compare with exponential RV
23 h1 = figure();
24 plot((1:n)*h, pdf T 1, 'Linewidth', 2);
25 hold on;
26 plot((1:n)*h, exppdf((1:n)*h, lambda) ,'--', 'Linewidth', 2);
27 xlabel('N(T)');
28 ylabel('Probability');
29 grid;
30 legend('Simulated', 'Poisson pmf', 'Location', 'Best');
31

32 h2 = figure();
33 plot((1:n)*h, cumsum(pdf T 1*h), 'Linewidth', 2);
34 hold on;
35 plot((1:n)*h, expcdf((1:n)*h, lambda) ,'--', 'Linewidth', 2);
36 xlabel('N(T)');
37 ylabel('Probability');
38 grid;
39 legend('Simulated', 'Poisson pmf', 'Location', 'Best');
40

41

42

43 %%% Export figure %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
44 set(h1,'Color','w');
45 export fig(h1, '-q101', '-pdf', 'HW7 C1.pdf');
46

47 set(h2,'Color','w');
48 export fig(h2, '-q101', '-pdf', 'HW7 C2.pdf');
49 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Figures 3 and 4 show a close fit with the exponential distribution.

D The distribution of T1. From part B, we have that P [N(t) = 0] = e−λt. Notice, however,
that having no arrival by time t is the same event as the first arrival occurring after time t. Hence,

P [N(t) = 0] = P [T1 > t]⇔ P [T1 ≤ t] = 1− P [N(t) = 0] = 1− e−λt.

Observe that this is the cdf of an exponential random variable with parameter λ. Hence, T1 is
indeed exponentially distributed with parameter λ.
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Figure 1: Comparison between the estimated pmf of N(T ) obtained from 104 experiments and the
Poisson pmf with parameter λT (part A).
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Figure 2: Comparison between the estimated pmf of N(T/2) obtained from 104 experiments and
the Poisson pmf with parameter λT/2 (part A).
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Figure 3: Comparison between the estimated pdf of T1 obtained from 104 experiments and the
exponential pdf with parameter λ (part C).
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Figure 4: Comparison between the estimated cdf of T1 obtained from 104 experiments and the
exponential cdf with parameter λ (part C).
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