
Week 9: Continuous-time Markov chains

Cellular network design

Solutions

A Departure process. Since Tdi ∼ exp(µ) is the time at which customer i hangs up, the
random variable Tk describing the time until the next departure can be written as

Tk = min(Td1, Td2, ..., Tdk).

Indeed, the first departure occurs as soon as the first costumer hangs up. To show Tk is exponentially
distributed with parameter kµ, let us derive its cdf. To do so, note that Tk > s, for some time s if
and only if Tdi > s for all i. Since the costumers are independent, we obtain

P [Tk > s] = P [Td1 > s]P [Td2 > s] . . .P [Tdi > s] .

Using the fact that the Tdi are exponentials yields

P [Tk > s] = (e−µs)k = e−(kµ)s

Using the definition of the cdf of the exponential distribution, Tk is therefore exponentially dis-
tributed with parameter kµ.

B Four simple questions on the departure process.

(1) Since the call duration of all costumers follows the same distribution (costumers are independent
and identically distributed, i.e., i.i.d.), they are all equally likely to be the first to hang up.
Hence,

P [Customer 1 is the first to hang up] =
1

k
.

(2) Recall that exponential distributions have a memoryless property, i.e., forX ∼ exp(λ), P [X > t+ s | X > t] =
P [X > s]. Since call durations are exponentially distributed, the amount of time a customer
has already been on a call is irrelevant to know how much longer the call will last. Since
costumers are i.i.d., both calls are equally likely to end first and

P [Customer i hangs up before Customer j] = 1/2.

(3) We can find the probability that Tdi > 3 minutes for 1/µ = 3 minutes directly from the
exponential CDF:

P [Tdi > 3] = e−µ3 == e−(1/3)3 ≈ 0.37.

(4) Using the memoryless property as in (2), P [Tdj > 3] = P [Tdi > 3] ≈ 0.37.

1

C Continuous time Markov chain (CTMC) model. Due to the memoryless property of
the exponential distribution, the number of calls at time t depends only on the number of calls
in the previous instant (the process is memoryless). Moreover, the probability of going from any
state i into any state j is the same regardless of when we are in that state (the process is time
invariant). Hence, the number of calls established at time t can be modeled as a CTMC (refer to
slide 35 of continuous time markov chains).

The transition rates qij are given by

qij =


λ, j = i+ 1

iµ, j = i− 1

0, otherwise

The transition diagram is:

i i+1i−10 K

λ

iµ (i+ 1)µ

λλ

(i− 1)µ (i+ 2)µ

λ

Kµ

λλ

µ

.

D Alternative CTMC representation. The transition rate out of state k is νk = λ+ kµ for
all states k. The probabilities Pij are given by

Pij =



1, i = 0 and j = 1
λ
νi
, 0 < i < K and j = i+ 1

iµ
νi
, 0 < i < K and j = i− 1

1, i = K and j = K − 1

0, otherwise

E Embedded Markov chain (MC) and ergodicity of the CMTC. The embedded discrete
MC associated with this CTMC has the same transition probabilities Pij , but the transitions happen
in uniform intervals rather than randomly. Its transition diagram is simply

i i+1i−10 K

λ
λ+iµ

iµ
iµ+λ

(i+1)µ
λ+(i+1)µ

λ
λ+(i+1)µ

λ
λ+(i−1)µ

(i−1)µ
λ+(i−1)µ

(i+1)µ
λ+(i+2)µ

λ
λ+(i−2)µ

1

λ
λ+(K−1)µ1

µ
λ

.

The CMTC X(t) is ergodic because its embedded DTMC is irreducible (there is only one class)
and positive recurrent (since it is finite). The question of periodicity is irrelevant since periodic
transitions occur with probability zero in continuous time.

F System simulation. The MATLAB function to simulate the call requesting process is given
below.

1 function [t, X] = cell model(lambda, avg duration, K, t max)
2 %CELL MODEL Simulate calls made to a base station using CTMC
3

4 mu = 1/avg duration;

2

5

6 % Initialize CTMC
7 X = 0;
8 t = 0;
9 index = 1;

10

11 % Simulate CTMC
12 while t(index) < t max
13 % Draw time until next transition
14 tau = exprnd(1/(lambda + mu*X(index)));
15 t(index+1) = t(index) + tau;
16

17 % State transition
18 if X(index) == 0
19 % Costumer requests a call
20 X(index+1) = 1;
21 elseif X(index) == K
22 % Costumer hangs up
23 X(index+1) = K-1;
24 else
25 % Draw if a costumer hangs up or requests a call
26 u = rand;
27

28 if u < X(index)*mu/(lambda+X(index)*mu)
29 % Costumer hangs up
30 X(index+1) = X(index) - 1;
31 else
32 % Costumer requests a call
33 X(index+1) = X(index) + 1;
34 end
35 end
36

37 index = index + 1;
38 end
39

40 end

To simulate the setup of the exercise, we can use the script:

1 % Delete all variables and close figures
2 clear all
3 close all
4

5 lambda = 25; % Call arrival rate (calls per minute)
6 mu = 56/60; % Average durantion of calls (minutes)
7 K = 32; % Number of channels
8 t max = 30; % Duration of simulation (minutes)
9

10 % Simulation
11 [t, X] = cell model(lambda, 1/mu, K, t max);
12

13 % Plot
14 figure();
15 stairs(t, X, 'Linewidth', 2)
16 xlabel('Time (minutes)')
17 ylabel('Number of calls in progress [X(t)]');
18 xlim([0 t max]);
19 ylim([0 K]);
20 grid;
21

22

23 %%% Export figure %%%
24 set(gcf,'Color','w');
25 export fig -q101 -pdf HW9 F.pdf

3

26 %%%

A sample realization of this process is shown in Figure 1.

G Limit distribution. The simplest way to derive the limit distribution is to follow the hint
from the exercise and express all Pi in terms of P0. To do so, we can write the set of balance
equations

λPi = (i+ 1)µPi+1, for i = 0, 1, . . . ,K − 1,

from which we obtain

Pi+1 =
1

(i+ 1)

λ

µ
Pi, for i = 0, 1, . . . ,K − 1.

This implies P1 = λ/µP0, P2 = λ/µP1 = 1/2(λ/µ)2P0. . . Solving the recursion we obtain

Pi =
1

i!

(
λ

µ

)i
P0, for i = 0, 1, . . . ,K.

Using the fact that the Pi form a probability distribution, we obtain the additional equation we
need to satisfy, namely

K∑
i=0

Pi = 1

Thus,

P0 =

[
K∑
i=0

1

i!

(
λ

µ

)i]−1

(1)

and

Pi =
1

i!

(
λ

µ

)i [K∑
i=0

1

i!

(
λ

µ

)i]−1

.

You may be tempted to try to find a closed form for (1). Resist that temptation: it does not
exist! Notice that the summation in (1) looks similar to the CDF of a Poisson random variable. It
turns out that its value depends on upper incomplete gamma function, which can only be computed
numerically.

H Ergodic limits. The ergodic limit converges almost surely to the limit probability when the
embedded DTMC of the CTMC in question is irreducible and positive recurrent, in other words,
when the CTMC is ergodic. As we have argued in Part E, this is the case for the current model.
Therefore, we can write

p̄k = Pk =
1

i!

(
λ

µ

)i [K∑
i=0

1

i!

(
λ

µ

)i]−1

, almost surely for 0 ≤ k ≤ K. (2)

The expression equating the ergodic limit and the limit probability in (2) does not imply
that p̄k = Pk for all realization of the process X(t). Recall that this equivalence holds almost
surely, i.e., with probability one. Therefore, there may be realizations for which p̄k 6= Pk, but these
realizations occur with probability zero. To make this argument more concrete, suppose that you
ran an infinite number of realizations of this process and found that in 10 of them p̄k 6= Pk. This

4

implies that

P [p̄k = Pk] = 1− P [p̄k 6= Pk] = 1− 10

∞
= 1. (3)

Notice that you can replace 10 by 106 or even 1010
10

without making any difference: as long as it is a
finite number, you haven’t violated anything. Hence, there may be a large number of realizations for
which p̄k 6= Pk, but there is an overwhelmingly larger number of realizations for which p̄k = Pk (an
infinite number of them, in fact).

This is a very subtle question. You should probably read this argument at least once more and
ask your TAs if things are not clear.

I Approximating Pk using a simulation. In this case, it is simpler to estimate Pk from
a single run of the simulation instead of multiple ones. In the former case, we simply need to
choose tmax long enough to ensure that we have enough samples to estimated the limit probabilities
using the ergodic averages. Recall that the limit of the ergodic averages yields the limit probabilities.
If we were to use ensemble averages (i.e., multiple runs), not only would we have to take tmax large
enough to attain the limiting (steady-state) regime of the CTMC, but we would need to run this
experiment multiple times (each time obtaining a single sample from where the CTMC has landed).

When we choose to use tmax = 104 minutes (roughly one week), since the ergodic averages
variation is below the required precision: the maximum change between the probabilities estimated
with tmax = 103 and tmax = 104 is less than 4 × 10−3. The MATLAB script below was used,
together with the code from part F, to produce the results in Figure 2.

1 % Delete all variables and close figures
2 clear all
3 % close all
4

5 lambda = 25; % Call arrival rate (calls per minute)
6 mu = 56/60; % Average durantion of calls (minutes)
7 K = 32; % Number of channels
8 t max = [1e3 1e4]; % Duration of simulation (minutes)
9

10 % Initialize Pk
11 Pk = zeros(K+1,length(t max));
12

13 for i = 1:length(t max)
14 % Simulate process
15 [t, X] = cell model(lambda, 1/mu, K, t max(i));
16

17 % Estimate limit probability
18 state = X(1:end-1);
19 time in state = diff(t);
20 total time = t(end);
21

22 for k = 0:K
23 Pk(k+1,i) = sum(time in state(state == k))/total time;
24 end
25 end
26

27 disp(abs(max(Pk(:,1) - Pk(:,2))));
28

29 % Plot
30 figure();
31 bar(0:K, Pk(:,2))
32 xlabel('State k')
33 ylabel('P k');
34 grid;
35

5

36

37 %%% Export figure %%%
38 set(gcf,'Color','w');
39 export fig -q101 -pdf HW9 I.pdf
40 %%%

J Blocked call probability. Notice that customers are denied service whenever all channels
are occupied when they request to try to make a call. Hence, we can write

P [blocked call] = P [X(t) = K] ,

which we know from Part G asymptotically becomes

P [blocked call] = PK =
1

K!

(
λ

µ

)K [K∑
i=0

1

i!

(
λ

µ

)i]−1

.

K Determining the need to add a new BS. Since we do not have the whole database, we
cannot determine the two busiest days of the year. But let’s assume that they are 12/24 (Christmas
eve) and 11/23 (Thanksgiving day). Ignoring these days and the next two largest entries, we obtain
our design target of 872 calls. Including the 5% predicted increase in demand, our target call rate
becomes λ? = 872(1.05)/30 ≈ 31 calls per minute. Using Part J, we then compute the probability
of blocked call (numerically) with the current 32 channels (be careful with the units of µ!)

P [blocked call] =
1

32!

(
31× 56

60

)32
[

32∑
i=0

1

i!

(
31× 56

60

)i]−1

≈ 0.0799 > 0.02.

Hence, we do need to install a new BS.

6

0 5 10 15 20 25 30

Time (minutes)

0

5

10

15

20

25

30

N
u

m
b

e
r

o
f

c
a

lls
 i
n

 p
ro

g
re

s
s
 [

X
(t

)]

Figure 1: A realization of the calls process with K = 32 channels, λ = 25 calls per minute, and
average call duration of 1/µ = 56 seconds (part F).

-5 0 5 10 15 20 25 30 35

State k

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

P
k

Figure 2: Estimated limit distribution of the CTMC from a single realization of length tmax =
104 minutes (part I).

7

