ESE 3400: Medical Devices Lab

Lec 12: October 24, 2022 Data Converters Pt 2

Penn ESE 3400 Fall 2022 – Khanna

- **SQNR**
- Oversampling
- Nyquist ADCs
- □ Flash ADCs
- □ SAR ADCs

- Practical quantizers have a limited input range and a finite set of output codes
- E.g. a 3-bit quantizer can map onto
 2³=8 distinct output codes

- Quantization error grows out of bounds beyond code boundaries
- We define the full scale range (FSR) as the maximum input range that satisfies $|e_q| \le \Delta/2$
 - Implies that $FSR = 2^{B} \cdot \Delta$

Effect of Quantization Error on Signal

- Quantization error is a deterministic function of the signal
 - Consequently, the effect of quantization strongly depends on the signal itself
- Unless, we consider fairly trivial signals, a deterministic analysis is usually impractical
 - More common to look at errors from a statistical perspective
 - "Quantization noise"

Quantization Error Statistics

- Crude assumption: e_q(x) has uniform probability density
- This approximation holds reasonably well in practice when
 - Signal spans large number of quantization steps
 - Signal is "sufficiently active"
 - Quantizer does not overload

Figure 4.57 Example of quantization noise. (a) Unquantized samples of the signal x[n] = 0.99cos(n/10).

Figure 4.57(continued) (b) Quantized samples of the cosine waveform in part (a) with a 3-bit quantizer. (c) Quantization error sequence for 3-bit quantization of the signal in (a). (d) Quantization error sequence for 8-bit quantization of the signal in (a).

Penn ESE 3400 Fall 2022 - Khanna

• Assuming full-scale sinusoidal input, we have

 $SNR_Q = 6.02B + 1.76 dB$

B (Number of Bits)	SQNR
8	50dB
12	74dB
16	98dB
20	122dB

□ For uniform B bits quantizer

$$SNR_Q = 10 \log_{10} \left(\frac{\sigma_x^2}{\sigma_e^2} \right)$$

□ For uniform B bits quantizer

$$SNR_Q = 10 \log_{10} \left(\frac{\sigma_x^2}{\sigma_e^2}\right)$$
$$= 10 \log_{10} \left(\frac{12 \cdot 2^{2B} \sigma_x^2}{FSR^2}\right)$$

$$SNR_Q = 6.02B + 10.8 - 20 \log_{10} \left(\frac{FSR}{\sigma_x}\right)^{\text{Quantizer range}}$$

$$\mathrm{SNR}_Q = 6.02B + 10.8 - 20 \log_{10} \left(\frac{FSR}{\sigma_x}\right)$$
Quantizer range

- □ Improvement of 6dB with every bit
- The range of the quantization must be adapted to the rms amplitude of the signal
 - Tradeoff between clipping and noise!
 - Often use pre-amp
 - Sometimes use analog auto gain controller (AGC)

• Assuming full-scale sinusoidal input, we have

 $SNR_Q = 6.02B + 10.8 - 20 \log_{10} \left(\frac{FSR}{\sigma_x}\right)^{\text{Quantizer range}}_{\text{rms of amp}}$

• Assuming full-scale sinusoidal input, we have

 $SNR_Q = 6.02B + 1.76 dB$

B (Number of Bits)	SQNR
8	50dB
12	74dB
16	98dB
20	122dB

Quantization Noise Spectrum

 If the quantization error is "sufficiently random", it also follows that the noise power is uniformly distributed in frequency

References

- W. R. Bennett, "Spectra of quantized signals," Bell Syst. Tech. J., pp. 446-72, July 1988.
- B. Widrow, "A study of rough amplitude quantization by means of Nyquist sampling theory," IRE Trans. Circuit Theory, vol. CT-3, pp. 266-76, 1956.

- □ Problem: Hard to implement sharp analog filter
- Consequence: Crop part of the signal and suffer from noise and interference

Quantization Noise with Oversampling

ADC Architectures

- □ Word-at-a-time
 - E.g. flash ADC
 - Instantaneous comparison with 2^B-1 reference levels
- Multi-step
 - E.g. pipeline ADCs
 - Coarse conversion, followed by fine conversion of residuals
- Bit-at-a-time
 - E.g. successive approximation ADCs
 - Conversion via a binary search algorithm

Penn ESE 3400 Fall 2022 - Khanna adapted from Murmann EE315B, Stanford

speed

Data: http://www.stanford.edu/~murmann/adcsurvey.html

Flash ADCs

□ Fast

- Speed limited by single comparator plus encoding logic
- High circuit complexity (2^B-1 comparators), high input capacitance
 - Typically only use for resolution up to 6...8 bits

- **B**-bit flash ADC:
 - DAC generates all possible 2^B-1 levels
 - 2^B-1 comparators compare V_{IN} to DAC outputs
 - Comparator output:
 - If $V_{DAC} < V_{IN} \rightarrow 1$
 - If $V_{DAC} > V_{IN} \rightarrow 0$
 - Comparator outputs form thermometer code
 - Encoder converts thermometer to binary code

- Most ADC architectures (other than flash) are based on minimizing (reducing) the error between input and a D/A signal approximation
 - Pipeline uses distributed DAC
 - SAR ADC uses comparator to sense error
 - Sigma-delta ADC minimizes error via integration and feedback

- Key features:
- High resolution
- Fast response and low latency
- Power varies with sample rate

- LTC2366 is part of a family of tiny ADCs sampling from 100KSps to 3MSps
- ADCs dissipate only 7.8mW at 3MSps, 1.5mW at 100KSps and 0.3 microwatts in sleep mode
- □ LTC2366 features no data latency through the ADC

Successive Approximation Algorithm

Successive Approximation Register ADC

- Binary search over DAC output
- □ High accuracy achievable (16+ bits)
 - Relies on highly accurate comparator
- □ Moderate speed (1+ Mhz)

- Sampling phase: Sample input with Sample-and-Hold
- Bit-cycling: Compare with DAC output, adjusting the SAR with each clock cycle as bits are determined

- **SQNR**
 - SQNR determined by bit resolution, B
 - ENOB determined by SNR
- Oversampling
 - Enables reduction in quantization noise and reduces stress on AAF.
 More next lecture...
- Nyquist ADCs
 - Speed vs. SNR tradeoff favors certain architectures for given application
 - Flash ADCs
 - Word-at-a-time for high speed, low resolution applications
 - SAR ADCs
 - Bit-at-a-time for low speed, low power applications
 - Highly suited for medical devices

Lab tomorrow

More PCB population and testing