ESE 3400: Medical Devices Lab

Lec 9: October 10, 2022 DTFT, Sampling and Reconstruction

- DTFT
- Sampling/Reconstruction
- Data Converters
 - Anti-Aliasing Filtering
 - Sampling Rate
 - Transfer Characteristics

Discrete-Time Fourier Transform (DTFT)

$$X(e^{j\omega}) = \sum_{k=-\infty}^{\infty} x[k]e^{-j\omega k}$$

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$

$$X(e^{j\omega}) = \sum_{k=-\infty}^{\infty} x[k]e^{-j\omega k}$$

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$

Alternate

$$X(f) = \sum_{k=-\infty}^{\infty} x[k] e^{-j2\pi fk}$$
$$x[n] = \int_{-0.5f_s}^{0.5f_s} X(f) e^{j2\pi fn} df$$

TABLE 2.3FOURIER TRANSFORM PAIRS

Sequence	Fourier Transform
1. δ[n]	1
2. $\delta[n - n_0]$	$e^{-j\omega n_0}$
3. 1 $(-\infty < n < \infty)$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega + 2\pi k)$
4. $a^n u[n]$ (<i>a</i> < 1)	$\frac{1}{1 - ae^{-j\omega}}$
5. <i>u</i> [<i>n</i>]	$\frac{1}{1 - e^{-j\omega}} + \sum_{k = -\infty}^{\infty} \pi \delta(\omega + 2\pi k)$
6. $(n+1)a^n u[n]$ $(a < 1)$	$\frac{1}{(1-ae^{-j\omega})^2}$
7. $\frac{r^n \sin \omega_p (n+1)}{\sin \omega_p} u[n] (r < 1)$	$\frac{1}{1 - 2r\cos\omega_p e^{-j\omega} + r^2 e^{-j2\omega}}$
8. $\frac{\sin \omega_c n}{\pi n}$	$X(e^{j\omega}) = \begin{cases} 1, & \omega < \omega_c, \\ 0, & \omega_c < \omega \le \pi \end{cases}$
9. $x[n] = \begin{cases} 1, & 0 \le n \le M \\ 0, & \text{otherwise} \end{cases}$	$\frac{\sin[\omega(M+1)/2]}{\sin(\omega/2)}e^{-j\omega M/2}$
10. $e^{j\omega_0 n}$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega - \omega_0 + 2\pi k)$
11. $\cos(\omega_0 n + \phi)$	$\sum_{k=-\infty}^{\infty} [\pi e^{j\phi} \delta(\omega - \omega_0 + 2\pi k) + \pi e^{-j\phi} \delta(\omega + \omega_0 + 2\pi k)]$

https://www.youtube.com/watch?v=ByTsISFXUoY

$$x_1[n] = \cos\left(\frac{\pi}{6}n\right)$$

 $x_2[n] = \cos\left(\frac{13\pi}{6}n\right) = \cos\left(\left(\frac{\pi}{6} + 2\pi\right)n\right)$

- Real world signals
 - Continuous time, continuous amplitude
- Digital abstraction
 - Discrete time, discrete amplitude
- **T**wo problems
 - How to go discretize in time and amplitude
 - A/D conversion
 - How to "undescretize" in time and amplitude
 - D/A conversion

Discrete and Continuous

□ Ideal continuous-to-discrete time (C/D) converter

- T is the sampling period
- $f_s = 1/T$ is the sampling frequency

•
$$\Omega_s = 2\pi/T$$

Reconstruction of Bandlimited Signals

 Nyquist Sampling Theorem: Suppose x_c(t) is bandlimited. I.e.

$$X_c(j\Omega) = 0 \quad \forall \quad |\Omega| \ge \Omega_N$$

- □ If $\Omega_s \ge 2\Omega_N$, then $x_c(t)$ can be uniquely determined from its samples $x[n] = x_c(nT)$
- Bandlimitedness is the key to uniqueness

Mulitiple signals go through the samples, but only one is bandlimited within our sampling band

Reconstruction in Frequency Domain

Reconstruction in Frequency Domain

Penn ESE 3400 Fall 2022 - Khanna

$$x_r(t) = x_s(t) * h_r(t) = \left(\sum_n x[n]\delta(t - nT)\right) * h_r(t)$$
$$= \sum_n x[n]h_r(t - nT)$$

$$x[n] \longrightarrow \underbrace{\begin{array}{c} \text{Convert} \\ \text{to impulse} \\ \frac{\text{train}}{T} \end{array}}_{T} x_s(t) \longrightarrow H_r(j\Omega) \longrightarrow x_r(t)$$

Reconstruction in Time Domain

$$x_r(t) = x_s(t) * h_r(t) = \left(\sum_n x[n]\delta(t - nT)\right) * h_r(t)$$
$$= \sum_n x[n]h_r(t - nT)$$

Reconstruction in Time Domain

$$x_r(t) = x_s(t) * h_r(t) = \left(\sum_n x[n]\delta(t - nT)\right) * h_r(t)$$
$$= \sum_n x[n]h_r(t - nT)$$

□ If $\Omega_N > \Omega_s/2$, $x_r(t)$ is an aliased version of $x_c(t)$

ADC

Analog to Digital Converter

Anti-Aliasing Filter with ADC

Sampling and Quantization

• For an input signal with V_{pp} =FSR with B bits

 $\Delta = \frac{FSR}{2^B}$

Quantization step Δ

- Quantization step Δ
- Quantization error has sawtooth shape
 - Bounded by $-\Delta/2$, $+\Delta/2$

- **Quantization** step Δ
- Quantization error has sawtooth shape
 - Bounded by $-\Delta/2$, $+\Delta/2$
- Ideally infinite input range and infinite number of quantization levels

- Practical quantizers have a limited input range and a finite set of output codes
- E.g. a 3-bit quantizer can map onto
 2³=8 distinct output codes

- Practical quantizers have a limited input range and a finite set of output codes
- E.g. a 3-bit quantizer can map onto
 2³=8 distinct output codes

- Quantization error grows out of bounds beyond code boundaries
- We define the full scale range (FSR) as the maximum input range that satisfies $|e_q| \le \Delta/2$
 - Implies that $FSR = 2^B \cdot \Delta$

- DTFT
 - Represent signals in time and frequency
 - Find frequency content of signal
- Sampling and Reconstruction
 - Must sample at greater than the Nyquist rate
 - Actually oversample most of the time
 - More on that later...
- □ ADC transfer function
 - LSB based on FSR and bit resolution of ADC
 - Quantization error imposed

- Quiz 1 on Wednesday
 - Covers lecture 1-8, labs 1-4`
 - Closed book/note
 - Can bring a calculator
 - Starts at exactly 5:15pm-6:15pm