ESE 3400: Medical Devices Lab

Lec 5: September 20, 2023 Signal Conditioning/Interface Circuits

- Lab 2 Discussion
- Amplification
 - Opamp
 - Practical Opamp Circuits
- Biopotential Amplifier
- Instrumentation Amplifier
- Driven Right Leg System
- Lab 3 Setup
 - LT Spice
 - Amplification and filter schematic

- Gain
- Bandwidth
- Pass band vs stop band
- Corner frequency
- □ 3dB point
- **Roll off**

https://www.electronicstutorials.ws/filter/filter_2.html

- Sensor outputs may (read: amost always) need amplification for any sort of acquisition and data analysis
- Use operational amplifier to do this
 - Amplifies differential input: $Out = A(V_{in+}-V_{in-})$, where A is large

Opamp

□ The ideal opamp characterized by seven properties

 Knowledge of these properties is sufficient to design and analyze a large number of useful circuits

Property No.1: Infinite Open-Loop Gain

- Open-Loop Gain A_{VOL} is the gain of the opamp without positive or negative feedback
- In the ideal opamp A_{VOL} is infinite
 - Typical values range from 20,000 to 200,000 in real devices
- Property No.2: Infinite Input Impedance
 - Input impedance is the ratio of input voltage to input current, $Z_{in} = V_{in}/I_{in}$
 - When Z_{in} is infinite, the input current $I_{in}=0$
 - High-grade opamps can have input impedance in the $T\Omega$ range
 - Some low-grade opamps, on the other hand, can have mA input currents

- Property No. 3: Zero Output Impedance
 - The ideal opamp acts as a perfect internal voltage source with no internal resistance
 - This internal resistance is in series with the load, reducing the output voltage available to the load
 - Real opamps have output-impedance in the $10-20\Omega$ range
 - Example

- Property No. 4: Zero Noise Contribution
 - In the ideal opamp, zero noise voltage is produced internally
 - That is, any noise at the output must have been at the input as well
 - Practical opamp are affected by several noise sources, such as resistive and semiconductor noise
 - These effects can have considerable effects in low signal-level applications

- Property No. 5: Zero output Offset
 - The output offset is the output voltage of an amplifier when both inputs are grounded
 - The ideal opamp has zero output offset, but real opamps have some amount of output offset voltage

- Property No. 6: Infinite Bandwidth
 - The ideal opamp will amplify all signals from DC to the highest AC frequencies
 - In real opamps, the bandwidth is rather limited
 - This limitation is specified by the Gain-Bandwidth product
 - GBW = f_{3dB} *Gain_{3dB}
 - Some opamps, such as the 741 family, have very limited bandwidth of up to a few KHz
- Property No. 7: Differential Inputs Stick Together*
 - In the ideal opamp, a voltage applied to one input also appears at the other input
 - *when connected in feedback

Ohm's Law and Kirchoff's Laws

Ohm's Law

- KCL Kirchoff's Current Law
 - The sum of the currents into a node = 0
- KVL Kirchoff's Voltage Law
 - The sum of the voltage differences around any closed loop in a circuit must be zero

□ KCL – Kirchoff's Current Law

• The sum of the currents into a node = 0

□ KVL – Kirchoff's Voltage Law

• The sum of the voltage differences around any closed loop in a circuit must be zero

A)

B

□ A) Voltage comparator

□ B) Voltage follower (Buffer)

C

D)

C) Non-inverting amplifier

D) Inverting amplifier

DIFFERENTIAL

SINGLE-ENDED

Differential biopotential amplifier.

Adapted from Prutchi and Norris (2005).

Differential biopotential amplifier.

Adapted from Prutchi and Norris (2005).

A

A

Biopotential Amplifier

 Basic function to increase the amplitude of a weak electric signal of biological origin typically process voltages

- Typical bio-amp requirements
 - High input impedance greater than $10 \text{ M}\Omega$
 - Safety: protect the organism being studied
 - Careful design to prevent macro and microshocks
 - Isolation and protection circuitry to limit the current through the electrode to safe level

Biopotential Amplifier

- □ Typical bio-amp requirements (con't)
 - Output impedance of the amplifier
 - should be low to drive any external load with minimal distortion
 - Gain greater than 1000
 - Biopotentials are typically less than a millivolt
 - Most are differential
 - High common mode rejection ratio
 - Biopotentials ride on a large offset signal
 - Rapid calibration of the amplifier in laboratory conditions
 - Adjustable gains
 - Often the change in scale is automatic

ECG Amplifiers

- Beating heart generates electric signal
 - monitored to understand heart functions
- Measurements are functions of
 - location at which the signal is detected
 - time-dependence of the signal amplitude
- Different pairs of electrodes at different locations yield different measurements
 - hence placement is standardized

ECG Leads

- □ In clinical electrocardiography
 - more than one lead must be recorded to describe the heart's electric activity fully
 - several leads are taken in the frontal plane and the transverse plane
 - frontal plane: parallel to the back when lying
 - transverse plane: parallel to the ground when standing
- Frontal plane lead placement called Eindhoven's triangle

- Frequency distortion
 - If filter specification does not match the frequency content of biopotential then the results is high and low frequency distortion
- Saturation of cutoff distortion
 - High electrode offset voltage can drive the amplifier to saturation causing peaks of waveform (QRS) to be cut off
- Ground loops
 - Can cause small currents to flow through patient's body
- Electric/magnetic field coupling
 - Open lead wires and long loops pick up EMI
- □ Interference from power lines (60Hz noise)

60Hz supply noise

Coupled to ECG

Interference Reduction Techniques

- Common-mode voltages can be responsible for much of the interference in biopotential amplifiers.
 - Solution 1:
 - Amplifier with a very high common-mode rejection
 - Solution 2:
 - Eliminate the source of interference
- □ Ways to eliminate interference
 - Use shielding techniques
 - Electrostatic shielding: Place a grounded conducting plane between the source of the interference and measurement system
 - Very important for EEG measurement
 - Magnetic shield: Use high permeability materials (sheet steel)
 - Use twisted cables to reduce loops

A

• One-amp differential amplifier

- One-amp differential amplifier
- Differential gain:

•
$$\frac{v_0}{v_i} = \frac{R_4}{R_3}$$
, where $R_4 \gg R_3$

- Characteristics
 - Good common mode rejection
 - Input resistance of the differential amplifier is lower than ideal opamp
 - Not good for many biomedical applications

- □ How can we fix the low input impedance?
- Option 1: Add voltage follower at each input

Pros and cons?

- □ How can we fix the low input impedance?
- Option 1: Add voltage follower at each input
 - Pros and cons?

• Option 2: Add non-inverting amplifier at each input

Pros and cons?

- Better option
 - Share R in input amps and eliminate ground connection

Instrumentation Amplifier

- This 3-op-amp circuit is called an instrumentation amplifier
- Input stage characteristics
 - low common-mode gain
 - -rejects common mode voltages (noise)
 - high input impedance
 - Input stage gain adjusted

- Overall amplifier
 - Amplifies only the differential component
 - High common mode rejection ratio
 - High input impedance suitable for biopotential electrodes

Driven Right Leg System

- Motivation
 - Reduce interference in amplifier
 - Improve patient safety
- Approach
 - Patient right leg tied to output of an auxiliary amp rather than ground
 - Common mode voltage on body sensed by averaging resistors, Ra's & fed back to right leg
 - Provides negative feedback to reduce common mode voltage
 - If high voltage appears between patient and ground, auxiliary amp effectively un-grounds the patient to stop current flow

Driven Right Leg System Example

Driven Right Leg System Example

□ **Problem**: Determine the common-mode voltage v_{cm} on the patient in the driven-right-leg circuit when a displacement current i_d flows to the patient from the power lines. Choose appropriate values for the resistances in the circuit so that the common-mode voltage is minimal. With a worst-case electrode resistance of $100k\Omega$, what is the v_{cm} when $i_d = 0.2uA$?

- Amplification
 - Use operational amplifier with differential signaling
- Biopotential Amplifier
 - Designed to amplify and filter sensor outputs for data acquisition or driving
- Instrumental Amplifier
 - Designed specifically for biopotential signals to compensate for non-idealities
 - Common-mode voltages responsible for much of the interference in biopotential amplifiers

- Finish Lab 2 and submit deliverables in Canvas by next lab day at midnight
- □ Lab 3 on Monday

- □ LT Spice
- Simulate the signal conditioning specific to our ECG design

Circuit Simulator

 LTspice is high performance SPICE simulator software, including a graphical schematic capture interface.
Schematics can be probed to produce simulation results—easily explored through LTspice's built-in waveform viewer.

Figure 2: Schematic of 2-Electrode ECG Amplifier with Optional Driven Reference Electrode

