ESE 3400: Medical Devices Lab

Lec 6: October 11, 2023 Data Converters

- DTFT vs DFT
- Sampling Examples
- **SQNR**
- Oversampling
- ADC Architectures
 - Flash ADCs
 - SAR ADCs
 - Delta-Sigma ADCs

ADC

Analog to Digital Converter

Anti-Aliasing Filter with ADC

If $\Omega_N > \Omega_s/2$, $x_r(t)$ an aliased version of $x_c(t)$

Anti-Aliasing Filter with ADC

Penn ESE 3400 Fall 2023 - Khanna

$$X(e^{j\omega}) = \sum_{k=-\infty}^{\infty} x[k]e^{-j\omega k}$$

$$X[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})e^{j\omega n} d\omega$$

λŢ

1

DFT:

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] W_N^{-kn}$$

 $X[k] = \sum_{n=0}^{N-1} x[n] W_N^{kn}$

Penn ESE 3400 Fall 2023 - Khanna

• For an input signal with V_{pp} =FSR with B bits

$$\Delta = \frac{FSR}{2^B}$$

- **Quantization** step Δ
- Quantization error has sawtooth shape
 - Bounded by $-\Delta/2$, $+\Delta/2$
- Ideally infinite input range and infinite number of quantization levels

- Practical quantizers have a limited input range and a finite set of output codes
- E.g. a 3-bit quantizer can map onto
 2³=8 distinct output codes

- Quantization error grows out of bounds beyond code boundaries
- We define the full scale range (FSR) as the maximum input range that satisfies $|e_q| \le \Delta/2$
 - Implies that $FSR = 2^B \cdot \Delta$

Effect of Quantization Error on Signal

- Quantization error is a deterministic function of the signal
 - Consequently, the effect of quantization strongly depends on the signal itself
- Unless, we consider fairly trivial signals, a deterministic analysis is usually impractical
 - More common to look at errors from a statistical perspective
 - "Quantization noise"

Quantization Error Statistics

- Crude assumption: e_q(x) has uniform probability density
- This approximation holds reasonably well in practice when
 - Signal spans large number of quantization steps
 - Signal is "sufficiently active"
 - Quantizer does not overload

Figure 4.57 Example of quantization noise. (a) Unquantized samples of the signal $x[n] = 0.99\cos(n/10)$.

Figure 4.57(continued) (b) Quantized samples of the cosine waveform in part (a) with a 3-bit quantizer. (c) Quantization error sequence for 3-bit quantization of the signal in (a). (d) Quantization error sequence for 8-bit quantization of the signal in (a).

• Assuming full-scale sinusoidal input, we have

 $SNR_Q = 6.02B + 1.76 dB$

B (Number of Bits)	SQNR
8	50dB
12	74dB
16	98dB
20	122dB

• For uniform B bits quantizer

$$SNR_Q = 10 \log_{10} \left(\frac{\sigma_x^2}{\sigma_e^2} \right)$$

• For uniform B bits quantizer

$$SNR_Q = 10 \log_{10} \left(\frac{\sigma_x^2}{\sigma_e^2} \right)$$
$$= 10 \log_{10} \left(\frac{12 \cdot 2^{2B} \sigma_x^2}{FSR^2} \right)$$

$$\text{SNR}_Q = 6.02B + 10.8 - 20 \log_{10} \left(\frac{FSR}{\sigma_x}\right)^{\text{Quantizer range}}$$
rms of amp

• Assuming full-scale sinusoidal input, we have

 $SNR_Q = 6.02B + 10.8 - 20 \log_{10} \left(\frac{FSR}{\sigma_x}\right)^{\text{Quantizer range}}$

• Assuming full-scale sinusoidal input, we have

 $SNR_Q = 6.02B + 1.76 \text{ dB}$

B (Number of Bits)	SQNR
8	50dB
12	74dB
16	98dB
20	122dB

 If the quantization error is "sufficiently random", it also follows that the noise power is uniformly distributed in frequency

References

- W. R. Bennett, "Spectra of quantized signals," Bell Syst. Tech. J., pp. 446-72, July 1988.
- B. Widrow, "A study of rough amplitude quantization by means of Nyquist sampling theory," IRE Trans. Circuit Theory, vol. CT-3, pp. 266-76, 1956.

Quantization Noise with Oversampling

ADC Architectures

- □ Word-at-a-time
 - E.g. flash ADC
 - Instantaneous comparison with 2^B-1 reference levels
- Multi-step
 - E.g. pipeline ADCs
 - Coarse conversion, followed by fine conversion of residuals
- **Bit-at-a-time**
 - E.g. successive approximation ADCs
 - Conversion via a binary search algorithm

speed

Data: http://www.stanford.edu/~murmann/adcsurvey.html

Flash ADCs

Fast

- Speed limited by single comparator plus encoding logic
- High circuit complexity (2^B-1 comparators), high input capacitance
 - Typically only use for resolution up to 6...8 bits

- **B**-bit flash ADC:
 - DAC generates all possible 2^B-1 levels
 - 2^B-1 comparators compare V_{IN} to DAC outputs
 - Comparator output:
 - If $V_{DAC} < V_{IN} \rightarrow 1$
 - If $V_{DAC} > V_{IN} \rightarrow 0$
 - Comparator outputs form thermometer code
 - Encoder converts thermometer to binary code

Multi-channel Bio-potential Recording

- Most ADC architectures (other than flash) are based on minimizing (reducing) the error between input and a D/A signal approximation
 - Pipeline uses distributed DAC
 - SAR ADC uses comparator to sense error
 - Sigma-delta ADC minimizes error via integration and feedback

- Key features:
- High resolution
- Fast response and low latency
- Power varies with sample rate

Pulse Oximetry Example

- LTC2366 is part of a family of tiny ADCs sampling from 100KSps to 3MSps
- ADCs dissipate only 7.8mW at 3MSps, 1.5mW at 100KSps and 0.3 microwatts in sleep mode
- □ LTC2366 features no data latency through the ADC

Successive Approximation Algorithm

Successive Approximation Register ADC

- Binary search over DAC output
- □ High accuracy achievable (16+ bits)
 - Relies on highly accurate comparator
- □ Moderate speed (1+ Mhz)

- Sampling phase: Sample input with Sample-and-Hold
- Bit-cycling: Compare with DAC output, adjusting the SAR with each clock cycle as bits are determined

Multi-channel Bio-potential Recording

Quantization Noise with Oversampling

Oversampled Converters Baseband Noise

$$S_{B} = S_{B0} \left(\frac{2f_{B}}{f_{s}} \right) = \frac{S_{B0}}{M}$$

where $M = \frac{f_{s}}{2f_{B}} = oversampling ratio$

2X increase in M

 \rightarrow 3dB reduction in S_B

 \rightarrow ½ bit increase in resolution/octave oversampling

First Order Sigma-Delta Modulator

Output is equal to delayed input plus filtered quantization noise

NTF Frequency Domain Analysis

- "First order noise Shaping"
 - Quantization noise is attenuated at low frequencies, amplified at high frequencies

Compressed Sensing Front End for ECG Monitoring

 Compressive sensing allows fewer samples to recover signals exactly if signal is sparse.

 The nRF52 family includes an adjustable 'successive-approximation ADC' which can be configured to convert data with up to 14-bit resolution (0..16383), and the reference voltage can be adjusted up to 3.6V internally.

- DTFT vs DFT
 - The DFT characterizes the spectral content of the desired signals
- **SQNR**
 - SQNR determined by bit resolution, B
 - ENOB determined by SNR
- Oversampling
 - Enables reduction in quantization noise and reduces stress on AAF.
 More next lecture...
- ADC Architectures
 - Flash ADCs Word-at-a-time for high speed, low resolution applications
 - SAR ADC Bit-at-a-time for low speed, low power applications
 - Sigma-Delta ADCs Usually for low speed, low power applications

- Monday: Data Converter Lab
- Wednesday: Quiz 1
 - Designed for an hour, but you have the full 1.5 hour
 - Covers Lec 1-5 and Labs 1-5