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Today

 Median Filter
 Compressive Sampling/Sensing
 RF ID technology
 Wireless Communication
 Quiz 2 Review
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Non-Linear System Example

 Median Filter
 y[n]=MED{x[n-k], …x[n+k]}

 Let k=1
 y[n]=MED{x[n-1], x[n], x[n+1]}
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Spectrum of Speech
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Low Pass Filtering 
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LP-Filtered
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Median Filtering
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Med-Filter
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Sampling Architectures
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Compressive Sampling

 What is the rate you need to sample at?
 At least Nyquist
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Compressive Sampling

 What is the rate you need to sample at?
 Maybe less than Nyquist…
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Something
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First: Compression

 Standard approach
 First collect, then compress 

 Throw away unnecessary data
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First: Compression

 Examples
 Audio – 10x

 Raw audio: 44.1kHz, 16bit, stereo = 1378 Kbit/sec
 MP3: 44.1kHz, 16 bit, stereo = 128 Kbit/sec

 Images – 22x
 Raw image (RGB): 24bit/pixel
 JPEG: 1280x960, normal = 1.09bit/pixel

 Videos – 75x
 Raw Video: (480x360)p/frame x 24b/p x 24frames/s + 44.1kHz 

x 16b x 2 = 98,578 Kbit/s
 MPEG4: 1300 Kbit/s
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First: Compression
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 Almost all compression algorithm use transform 
coding 
 mp3: DCT 
 JPEG: DCT 
 JPEG2000: Wavelet 
 MPEG: DCT & time-difference
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Sparse Transform
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Sparse Transform
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Signal Processing Trends

 Traditional DSP  sample first, ask questions later
 Explosion in sensor technology/ubiquity has caused 

two trends:
 Physical capabilities of hardware are being stressed, 

increasing speed/resolution becoming expensive
 gigahertz+ analog-to-digital conversion
 accelerated MRI
 industrial imaging

 Deluge of data
 camera arrays and networks, multi-view target databases, 

streaming video...

 Compressive Sensing  sample smarter, not faster
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Compressive Sensing/Sampling

 Standard approach
 First collect, then compress 

 Throw away unnecessary data
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Sparsely sample Reconstruction



Sensing to Data
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Sparse signal in time Frequency spectrum

Compressive Sampling

 Sample at lower than the Nyquist rate and still 
accurately recover the signal, and in most cases 
exactly recover
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Undersampled in time

Compressive Sampling

 Sample at lower than the Nyquist rate and still 
accurately recover the signal, and in most cases 
exactly recover

19Penn ESE 3400 Fall 2023 - Khanna



Undersampled in time

Compressive Sampling

 Sample at lower than the Nyquist rate and still 
accurately recover the signal, and in most cases 
exactly recover
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Undersampled in time Undersampled in frequency
(reconstructed in time with IFFT)

Compressive Sampling

 Sample at lower than the Nyquist rate and still 
accurately recover the signal, and in most cases 
exactly recover
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Undersampled in time

Compressive Sampling

 Sample at lower than the Nyquist rate and still 
accurately recover the signal, and in most cases 
exactly recover
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Undersampled in frequency
(reconstructed in time with IFFT)

Requires sparsity and incoherent sampling
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Compressive Sampling

 Sense signal M times
 Recover with linear 

program
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Numerical Recovery Curves

 Sense S-sparse signal of length N randomly M times

 In practice, perfect recovery occurs when M ≈ 2S for N ≈ 1000
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N=256
N=512
N=1024 



A Non-Linear Sampling Theorem

 Exact Recovery Theorem (Candès, R, Tao, 2004):
 Select M sample locations {tm} “at random” with

 Take time-domain samples (measurements)

 Solve

 Solution is exactly recovered signal with extremely 
high probability
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Biometric Example: Parkinson’s Tremors

 6 Subjects of real tremor 
data

 collected using low intensity 
velocity-transducing laser 
recording aimed at reflective 
tape attached to the subjects’ 
finger recording the finger 
velocity

 All show Parkinson’s tremor 
in the 4-6 Hz range.  

 Subject 8 shows activity at 
two higher frequencies

 Subject 4 appears to have two 
tremors very close to each 
other in frequency 
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Compressive Sampling: Real Data
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C=10.5, T=30
 20% Nyquist required samples 

Biometric Example: Parkinson’s Tremors
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 Tremors detected 
within 100 mHz

 randomly sample 
20% of the 
Nyquist required 
samples

Biometric Example: Parkinson’s Tremors
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Requires post processing to randomly sample!
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MRI Compressed Sampling
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Neural Spike Detection
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RF ID
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RF ID

 Radio Frequency Identification (RFID), a wireless 
technology primarily known from the field of 
logistics, has become a focal point in hospitals and 
similar areas

 RFID makes it possible to manage hospital beds 
from a central location or track the whereabouts of 
surgical instruments
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Optimization of Clinical Use

 Medical accessories now provides new possibilities in the 
area of intensive care

 For example, hospital staff can be relieved of routine 
activities when a signal indicates that a water trap must be 
replaced or a ventilator automatically adjusts settings of a 
connected accessory such as a ventilation hose

 This enables the optimization of clinical workflows.
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What is RFID

 Radio Frequency Identification 
 Reader queries using RF
 Tag/Fob sends its ID using RF
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RFID Tags

 Tag = Antenna, Radio receiver, radio modulator, 
control logic, memory and a power system 

 Power Source: 
 Passive Tags: Powered by incoming RF. Smaller, cheaper, 

long-life. Approx range 5m. 
 Active Tags: Battery powered. Can be read 100 ft away. 

More reliable reading. 
 Semi-Passive tags: Transmit using 'Backscatter' of readers' 

RF power. Battery for logic. Range like passive. Reliability 
like active.
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RFID Readers

 Sends a pulse of radio energy and listens for tags response 
 Readers may be always on, e.g., toll collection system or 

turned on by an event, e.g., animal tracking 
 Postage stamps size readers for embedding in cell phones 

Larger readers are size of desktop computers 
 Most RFID systems use License-exempt spectrum 
 Trend towards high-frequency
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Microchip Implants

 Microchip implants are generally shaped like cylinders.
 They contain a small microchip, a bio-safe epoxy resin, and a 

copper antenna wire coil encased in glass. 
 Microchips used for both animals and humans are field 

powered and have no battery or power source. 
 Therefore, they are inert until they come within the field 

produced by a reader device, which implants communicate 
with over a magnetic field.
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<2mA from 1.05-1.5V battery

VeriChipTM

Respironics

Commercial Products

 For the desired functionality, 
current products are:
 Too power hungry
 Too big

 Proposed design meets 
desired functionality with
 A new power management 

scheme to eliminate a battery
 System design that includes 

application as a system tradeoff 
to optimize circuits

 Ex. tradeoff speed for power
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RF Tag

System Diagram

Memory

Control FSM

DSP

ADC

Bio signal

Filter

Amplifier

Accelerometer
Energy Source

(ultracapacitors)

Power Management

Signal Sensing and
Processing

Power Management

Data Collection and Transmission
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Bluetooth LE
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Motivation

 With micro-sized, ultra-thin, flexible, and 
biocompatible electronic systems 

 giving way to wearable and implantable devices that 
can achieve the same functionality at greatly reduced 
patient discomfort

 In addition, wireless medical solutions are often 
much more affordable for patients and lower cost 
for healthcare providers
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Bluetooth Low Energy

 Bluetooth technologies epitomize recent advances in 
wireless technologies that allow for the remote 
operation of mobile medical devices

 In 2010, Bluetooth released its latest wireless 
platform: Bluetooth Low Energy (BLE), aimed at 
creating wireless applications in numerous fields 
including healthcare
 provides devices with wireless communications at 

aggressive power metrics and low costs without 
sacrificing performance relative to other wireless 
standards. 
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Bluetooth Low Energy
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Bluetooth Low Energy Specifications. Source: Bluetooth 4.0: Low Energy (2010, p. 8).



Other Protocols
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Power Comparison
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A. Dementyev, S. Hodges, S. Taylor and J. Smith, "Power consumption analysis 
of Bluetooth Low Energy, ZigBee and ANT sensor nodes in a cyclic sleep 
scenario," 2013 IEEE International Wireless Symposium (IWS), 2013, pp. 1-4, 
doi: 10.1109/IEEE-IWS.2013.6616827.



Example: Smart Wound Dressing
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 A flexible, galvanic oxygen sensor on the order of  100 μm in diameter
 The oxygen sensor is interfaced via a flexible conductor to an analog-

front-end circuit for amplification 
 The output of  the analog-front-end is read into a microcontroller 

through an analog-to-digital converter
 Data is converted back to a voltage value and wirelessly transmitted to a 

nearby computer or smartphone via a Bluetooth Low Energy

P. Mostafalu, W. Lenk, M. Dokmeci, B. Ziaie, A. Khademhosseini
and S. Sonkusale, "Wireless flexible smart bandage for continuous 
monitoring of wound oxygenation," 2014 IEEE Biomedical Circuits 
and Systems Conference (BioCAS) Proceedings, 2014, pp. 456-
459, doi: 10.1109/BioCAS.2014.6981761.



Security Risks of Wireless Communication

 A typical mobile medical device will have a low-power wireless 
communications system, such as a BLE or ZigBee radio. 

 The use of low power radios requires an intermediate base station in 
close proximity to the user (e.g. 150 meters maximum for BLE) where 
data can be dumped and subsequently uploaded to a “secure” server 

 The transmission of data across a wireless network presents a glaring 
security vulnerability if malicious hackers can penetrate the network 
security and gain access to confidential patient information. 

 Furthermore, if the medical device itself can directly be accessed or 
programmed from a remote location, such as the previously discussed 
smart wound dressing, malicious hackers could actually hijack operation 
of the device to steal private information or cause device malfunction.
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Security Breaches

 Three categories (Rushanan, 2014):
 Telemetry Interface Breaches

 Passive – eavesdropping breaching patient confidentiality
 Active – jam, modify or forge the information exchange

 Software Threats
 Hardware/Sensor Threats

 Eg. Rowhammer attack
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M. Rushanan, A. D. Rubin, D. F. Kune and C. M. Swanson, "SoK: Security and Privacy in 
Implantable Medical Devices and Body Area Networks," 2014 IEEE Symposium on 

Security and Privacy, 2014, pp. 524-539, doi: 10.1109/SP.2014.40.



Example: Insulin Pump

 Hacking Medical Devices for Fun and Insulin: 
Breaking the Human SCADA System
 Jerome Radcliffe

 Used a relatively cheap microcontroller and available 
details on wireless communication command codes 

 Can potentially alter readings or dosages

 https://cs.uno.edu/~dbilar/BH-US-
2011/materials/Radcliffe/BH_US_11_Radcliffe_Hacking_
Medical_Devices_WP.pdf
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Security Solutions

 Advances in electrical engineering and related fields 
such as computer science can certainly mitigate 
these risks as well

 Researches are investigating highly advanced data 
encryption methods, security protocols, and trust 
models to help secure wireless medical instruments
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Example: Trustworthy Data Collection

 Public-key cryptography standard (IEEE 1363) with 
a complex, probabilistic trust model to demonstrate 
highly trustworthy data collection

 Data is scrambled and two “keys” are required to 
unscramble
 Keys are mathematically related but computationally 

infeasible to generate private from public

 Trust model no longer binary but continuous 
between 0 and 1 
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Hu F, Hao Q, Lukowiak M, Sun Q, Wilhelm K, Radziszowski S, Wu Y. Trustworthy data 
collection from implantable medical devices via high-speed security implementation 
based on IEEE 1363. IEEE Trans Inf Technol Biomed. 2010 Nov;14(6):1397-404. doi: 

10.1109/TITB.2010.2049204. Epub 2010 Apr 26. PMID: 20423808.



Big Ideas

 Compressive Sampling
 Sample at less than Nyquist using sparsity

 RF ID used to automate and optimize clinical 
systems
 Tags hold information and transmit data to reader
 Mostly near field use

 Wireless communication
 Needs to be low energy

 BLE is taking over as industry standard

 Poses security risk
 Need trustworthy security protocols
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Admin

 Finish Lab 9 by Monday
 Submit Google Colab PDF in Canvas

 Lab 10 Monday
 CircuitPython and BLE

 Quiz 2 Wednesday
 Project details posted on Wednesday
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Quiz Admin

 Quiz 2
 In Towne 305 Wednesday 11/15
 90 minutes, start at exactly 10:15am
 Calculators allowed (non-cell phone)
 8.5x11 cheat sheet allowed
 Cumulative, but will focus on lectures 5-8 and 

labs 6, 8 and 9 (ADC and filter labs)
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Quiz 2 Review
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Signals and Systems
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Discrete-Time Sinusoids
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 Discrete-time sinusoids                   have two counterintuitive properties

 Both involve the frequency ω

 Property #1: Aliasing

 Property #2: Aperiodicity



Property #1: Aliasing of Sinusoids
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 The signals x1 and x2 have different frequencies but are identical!

 We say that x1 and x2 are aliases;  this phenomenon is called aliasing



Property #2: Periodicity of Sinusoids
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Harmonic Sinusoids
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Example problems:

 Which is higher in frequency?
 cos(πn) or cos(3π/2n) ?

 Periodic or not?
 cos(5/7πn)
 cos(π/5n)
 If so, what are N and k?  (I.e How many samples is one 

period?
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LTI Systems
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 LTI system can be completely characterized by its impulse 
response

 Then the output for an arbitrary input is a sum of  weighted, 
delay impulse responses

y[n]= x[n]∗h[n]



Convolution
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 Convolution formula:

 Convolution method: 
 1) Time reverse the impulse response and shift it n time steps to the 

right
 2) Compute the inner product between the shifted impulse response 

and the input vector
 Repeat for every n to get the output



Convolution Example
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 Convolve a unit pulse with itself

 Convolve a unit pulse with a unit pulse twice the width



DTFT and Sampling
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DTFT Definition
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X (e jω ) = x[k]
k=−∞

∞

∑ e− jωk

x[n]= 1
2π

X (e jω
−π

π

∫ )e jωndω



DSP System
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Frequency Domain Analysis
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Anti-Aliasing Filter
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DTFT Vs. DFT
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X (e jω ) = x[k]
k=−∞

∞

∑ e− jωk

x[n]= 1
2π

X (e jω
−π

π

∫ )e jωndω
DTFT:

DFT:



X [k]= Wnk
10n=0

5
∑ = e

− jπ
2
k
sin 3π

5
k

⎛

⎝
⎜

⎞

⎠
⎟

sin π
10
k

⎛

⎝
⎜

⎞

⎠
⎟

DFT vs DTFT

 Back to example
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“10-point” DFT

Use fftshift
to center 
around dc

“6-point” DFT



ADC

Analog to Digital Converter
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Ideal B-bit Quantizer
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 Practical quantizers have a limited input 
range and a finite set of  output codes 

 E.g. a 3-bit quantizer can map onto 
23=8 distinct output codes 

 Quantization error grows out of  
bounds beyond code boundaries

 We define the full scale range (FSR) as 
the maximum input range that satisfies 
|eq|≤Δ/2
 Implies that FSR = 2B· Δ
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Signal-to-Quantization-Noise Ratio

75

 Assuming full-scale sinusoidal input, we have
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SNRQ =  6.02B + 1.76 dB



Nyquist ADC Architectures

 Word-at-a-time
 E.g. flash ADC 
 Instantaneous comparison with 2B-1 reference levels 

 Multi-step
 E.g. pipeline ADCs
 Coarse conversion, followed by fine conversion of 

residuals 

 Bit-at-a-time
 E.g. successive approximation ADCs
 Conversion via a binary search algorithm 

76
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EE315B, Stanford 

speed



ADC Survey (ISSCC & VLSI 1997-2013)
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ADC Big Ideas

 SQNR
 SQNR determined by bit resolution, B

 Nyquist ADCs
 Flash ADCs

 Word-at-a-time for high speed, low resolution applications

 SAR ADCs
 Bit-at-a-time for low speed, low power applications
 Highly suited for medical devices

 Oversampling 
 Enables reduction in quantization noise with digital filter
 Sigma-Delta ADCs

 Use integrator in feedback to shape noise and achieve high resolution
 Usually for low speed, low power applications 
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Example Problems

 Which ADC topology would you choose and why?
 A 6b ADC with sampling frequency of 1Mhz?
 A 14b ADC with sampling frequency of 10 khz?
 A 8b ADC with sampling frequency of 100 khz?

 What is the SQNR of each design?
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Digital Filters
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Filter Specifications
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Example: Window DTFT
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W (e jω ) = w[k]
k=−∞

∞

∑ e− jωk

= e− jωk
k=−N

N

∑

W (e jω ) =
sin (N +1 2)ω( )
sin ω 2( )



Tradeoff – Ripple vs. Transition Width
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Example: Ideal Low-Pass Filter
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hLP[n]= wN [n− N ]⋅h[n− N ]
Truncate
and shift



FIR Design by Windowing
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Example Problems 

 Compute the DTFT of a simple(ish) window 
function

 Given a filter frequency response, what is the 
transition bandwidth?  Pass ripple?  Stop ripple?

 Create a freq and gain array for a given 
frequency spectrum requirement.

 Review Lab 8 and 9!  Lots of problems there
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Frequency Analysis with DFT

 Length of window determines spectral resolution
 Type of window determines side-lobe 

amplitude/main-lobe width (spectral 
leakage/spreading)
 Some windows have better tradeoff between resolution 

and side-lobe height

 Zero-padding approximates the DTFT better 
(spectral sampling). Does not introduce new 
information!
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