Big Idea Compilation
Lec 2: Big Idea

- MOSFET Transistor as switch
- Functionality-driven simplified modeling (Zero order)
 - Aid reasoning
 - Sanity check
 - Simplify design
Lec 2: Big Idea

- Systematic construction of any gate from transistors
 1. Use static CMOS structure
 2. Design PMOS pullup for f
 3. Use DeMorgan’s Law to determine f'
 4. Design NMOS pulldown for f'
Lec 3: Big Ideas

- MOSFET Transistor as switch
- Purpose-driven simplified modeling
 - Aid reasoning, sanity check, simplify design
- Analysis methodology
 - Zero order to understand switch state (logic)
 - First-order to get equivalent RC circuit (delay)
- New perspective on Rs and Cs
Lec 4: Big Idea

- Need robust logic
 - Can design into any (feed forward) graph with logic gates and tolerate loss and noise, while maintaining digital abstraction

- Regeneration and noise margins
 - Every gate makes signal “better”
 - Design level of noise tolerance
Lec 5: Big Idea: Delay is RC Charging
Lec 6-8: Big Idea

- 3 Regions of operation for MOSFET
 - Subthreshold
 - Linear
 - Saturation
 - Pinch Off
 - Velocity Saturation, DIBL
 - Short channel

Penn ESE370 Fall2015 – Khanna
Lec 9: Big Idea

- Capacitance
 - To every terminal
 - Voltage dependent

Penn ESE 370 Fall 2015 - Khanna
Lec 10: Big Idea

- Parameters Approximate
- Differ
 - Chip-to-chip, transistor-to-transistor, over time
- Robust design accommodates
 - Tolerance and Margins
 - Doesn’t depend on precise behavior
Lec 11: Big Idea

- Layouts are physical realization of circuit
 - Geometry tradeoff
 - Can decrease spacing at the cost of yield
 - Design rules

- Can go from circuit to layout or layout to circuit by inspection
Lec 12: Big Ideas

- Moderately predictable VLSI Scaling
 - unprecedented capacities/capability growth for engineered systems
 - change
 - be prepared to exploit
 - account for in comparing across time
 - …but not for much longer
Lec 13: Ideas

- First order delay reason in $\tau = R_0 C_0$ units
 - Equivalently (C_0/I_0) units
- Scaling everything up doesn’t help
- Drive large capacitive loads in stages
Lec 14: Ideas

- First order reason in $\tau = R_0C_0$ units
- Gates have different efficiencies
 - Drive strength per unit input capacitance
- Without velocity saturation
 - Reason to prefer nand over nor
- With velocity saturation (short term),
 - nands and nors are similar efficiency
- Large fanin and fanout slow gates
 - Decompose into stages
 - …but not too much
Lec 15-16: Ideas

- Three components of power
 - Static
 - Dynamic
 - Short-circuit

- \(P_{tot} = P_{static} + P_{dyn} + P_{sc} \)

- Power is data dependent and a function of our switching
Lec 17: Ideas

- There are other logic disciplines
- We have the tools to analyze
- Ratioed Logic
 - Tradeoff noise margin for
 - Reduced area? Capacitive load?
 - Dissipates static power in one mode
Lec 18: Ideas

- We know many things we can do to our circuits
- Design space is large
- Systematically identify dimensions
- Identify continuum (trends) tuning when possible
- Watch tradeoffs
 - ...don’t over-tune
Lec 19-20: Idea

- There are other circuit disciplines
- Can use pass transistors for logic
 - Even chains of pass transistors
 - Mostly gives area win, sometimes gives delay win
 - Will talk more about delay on Monday
- Do not cascade as easily as CMOS
Lec 21: Idea

- Lumped wiring calculation is conservative
 - Not all capacitance at end of wire
- Elmore delay calculation allows us to estimate delay for lumped RC network
- Wires are distributed RC
 - Half delay lumped calculation
 - Still quadratic in length
Lec 22: Idea

- To drive large loads
 - Scale buffers geometrically
 - Exponential scale up in buffer size ($\rho = e$)
- Scale factor: 3—4 typically
 - One origin of fanout 4 target
- Drains contribute capacitance, too (C_{diff})
- Can formulate sizing to optimize
Lec 23: Idea

- Synchronize circuits
 - to external events
 - disciplined reuse of circuitry

- Leads to clocked circuit discipline
 - Uses state holding element
 - Prevents
 - Combinational loops
 - Timing assumptions
 - (More) complex reasoning about all possible timings
Dynamic/clocked logic

- Only build/drive one pulldown network
- Fast transition propagation
- Spend delay (capacitance) on pullup of critical path of logic
- More complicated design, power dissipation
 - Reserve for when most needed
Lec 25: Idea

- Memory for compact state storage
- Share circuitry across many bits
 - Minimize area per bit \Rightarrow maximize density

- Aggressively use:
 - Pass transistors, Ratioing
 - Precharge, Amplifiers
to keep area down
Lec 26: Idea

- Memory for compact state storage
 - Minimize area per bit → maximize density
 - Requires careful sizing

- Share circuitry across many bits
 - Precharge, Amplifiers

- Serial address memories
 - Use pointers to access memory
 - Eg. FIFO queue
Lec 27: Idea

- Multiported SRAMS
 - Enable register file operation
 - Hurts read stability

- Serial access memories do not use an address
 - Shift Registers, Serial In Parallel Out (SIPO), Parallel In Serial Out (PISO), Queues (FIFO, LIFO)

- DRAM memory
 - Smaller memory cell
 - Require data refresh
 - Bootstrap wordlines
Lec 28: Idea

- Minimize area of repeated cell
- Compensate with periphery
 - Amplification (regeneration/restoration)
- Match periphery pitch to cell row/column
 - Decode
 - Sensing
 - Writer Drivers
Lec 29: Idea

- Capacitance is everywhere
- Especially between adjacent wires
- Will get “noise” from crosstalk
- Clocked and driven wires
 - Slow down transitions
- Undriven wires voltage changed
- Can cause spurious transitions
Lec 30: Idea

- Long wires are inductive
 - **Avoid** them
 - Especially on power supplies
- Bypass capacitors help

\[V_2 = V_S + B e^{\left(-\frac{R}{2L}\right)t} \]
\[+ e^{\left(j\sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}\right)t} \]

Diagram:
- L = 10 nH
- R = 100
- C = 1 pF
Lec 31-32: Idea

- Signal propagate as wave down transmission line
 - Delay linear in wire length
 - Speed
 - Impedance
- Behavior at end of line depends on termination
- Both src and sink are “ends” with reflections

\[w = \frac{1}{\sqrt{LC}} = \frac{c_0}{\sqrt{\varepsilon_r \mu_r}} \]

\[Z_0 = \sqrt{\frac{L}{C}} \]

\[V_r = V_i \left(\frac{R - Z_0}{R + Z_0} \right) \]
Lec 33: Idea

- Transmission lines
 - high-speed
 - high throughput
 - long-distance signaling
- Termination
- Signal quality

\[
\begin{align*}
\omega &= \frac{1}{\sqrt{LC}} = \frac{c_0}{\sqrt{\varepsilon_r \mu_r}} \\
Z_0 &= \sqrt{\frac{L}{C}} \\
V_r &= V_i \left(\frac{R - Z_0}{R + Z_0} \right)
\end{align*}
\]
Lec 34: Idea

- Wire delay linear once buffered optimally
- Optimal buffering equalizes delays
 - Buffer delay
 - Delay on wire between buffers
 - Delay of wire driving buffer