Due: Wednesday, October 7, 12:00 PM

Unless otherwise noted, assume:

- \(V_{dd} = 0.8 \text{V}, \ V_{thn} = 300 \text{mV}, \ V_{thp} = -300 \text{mV}, \ C_{OX} = 35 \text{fF}/(\mu \text{m})^2, \)
 \(L_{\text{drawn}} = 22 \text{nm}, \ L_{\text{eff}} = 17 \text{nm}, \ W = 44 \text{nm}, \ n = 1.5, \ \nu_{\text{SAT}} = 10^5 \text{m/s}, \ \lambda = 0 \) (probably not correct, but should be consistent where needed), \(\mu_n = 540 \text{cm}^2/(\text{V} \cdot \text{s}), \ \mu_p = 200 \text{ cm}^2/(\text{V} \cdot \text{s}), \ T = 27 \text{C} \) (300K)

- For analytic device modeling, use Equations 3.25, 3.29, 3.37, 3.38, from text.
 - instead of 3.39, use (NMOS):
 \[
 I_{DS} = I_S \left(\frac{W}{L_{\text{eff}}} \right) e^{\frac{V_{GS}-V_{thn}}{n kT/q}} \left(1 - e^{-\frac{V_{DS}}{kT/q}} \right) (1 + \lambda V_{DS})
 \] (1)

PMOS:
\[
I_{DS} = -I_S \left(\frac{W}{L_{\text{eff}}} \right) e^{-\frac{|V_{GS}-V_{thp}|}{n kT/q}} \left(1 - e^{\frac{V_{DS}}{kT/q}} \right) (1 - \lambda V_{DS})
\] (2)

with \(I_s = 1 \times 10^{-6} \text{A} \)

- 22nm PTM Spice models: `/home1/e/ese370/ptm/22nm_HP.pm`

NOTE: These parameters are rough approximations and will not match SPICE perfectly.

For questions 1-4 perform the calculations and simulations for an NMOS device.

1. Identify \(V_{DSAT} \).
2. What is the equivalent source-drain resistance \(R_{ds} \) for \(V_{gs} = V_{dd} \) with \(V_{ds} = V_{dd} \)?
 (a) calculate from equations
 (b) estimate from SPICE (similar to hw4)
3. Using equations, estimate worst-case gate capacitance \(C_g \).
4. What is the RC time-constant for a transistor discharging another transistor’s gate input?
 (a) based on \(R_{ds} (V_{gs} = V_{dd}) \) and \(C_g \)
 (b) compare with SPICE
We generally want I_{on}/I_{off} large in order to: (a) achieve output voltages close to the rail, (b) switch quickly, and (c) leak little. Questions 5-9 provide some setup then culminates in a small design problem to select voltage to achieve a target, large I_{on}/I_{off} even in the face of variation.

5. Consider an inverter with $V_{in} = V_{dd}$ after the output has settled to steady state. Using equations:

 (a) Identify the region of operation for the two transistors.
 (b) Identify the current through the transistors.
 (c) Identify V_{ol}. (We specifically want to know how far it is from 0; so, do not approximate it as zero as we would typically, but try to identify the small, non-zero value.)

6. At room temperature what is $I_{on}/I_{off} = I_{ds}(V_{gs} = V_h) / I_{ds}(V_{gs} = V_l)$ for an NMOS transistor used in an inverter with $W_p = W_n$; assume $V_{ds} = V_{dd}$ for both cases, so this is just after the input switching in the $V_{gs} = V_h$ case.

 (a) Ideal: $V_h = V_{dd}$, $V_l = 0V$
 (b) With 100mV noise margins: $V_h = V_{dd}-100mV$, $V_l = 100mV$

7. What is the impact of increasing V_{th} on the following (we want a description with words and equations):

 (a) Speed of charging?
 (b) I_{on}/I_{off} with 100mV noise margins.

8. Consider the simple CMOS inverter operated at $V_{dd}=500mV$.

 (a) What makes this case different from the $V_{dd}=0.8V$ case?
 (b) Identify V_{oh}, V_{ih}, V_{it}, V_{ol}, and the high and low noise margins that provide proper restoration.
 (c) What does this tell you about your freedom to select V_{dd} and still achieve proper operation?

9. Design problem: Use equations to select V_{dd}, V_{th} to achieve $I_{on}/I_{off} > 10^6$ for an NMOS transistor as used in an inverter. Try to keep V_{dd} as small as possible. Assume 100mV noise margin, so $V_{th} \approx V_{dd} - 100mV$, $V_{it}=100mV$. This minimum I_{on}/I_{off} ratio should hold across the temperature range 0C to 100C.