ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems

Lec 11: September 30, 2015
Layout and Area
Today

- Layout
 - Transistors
 - Gates
- Design rules
- Standard cells
Transistor

Side view

Perspective view

contact
Channel
contact

W
Tox
L
Layout

- Sizing & positioning of transistors
- Designer controls \(W, L \)
- \(t_{\text{ox}} \) fixed for process
 - Sometimes thick/thin oxide “flavors”
NMOS Geometry

Top view

Perspective view
NMOS Geometry

- Color scheme
 - Red: gate
 - Green: source and drain areas (n type diffusion)

Top view

L

W

S

G

D
NMOS vs PMOS

- NMOS built on p substrate
- PMOS built on n substrate
 - Needs an N-well
PMOS Geometry

- Color scheme
 - Red: gate
 - Orange: source and drain areas (p type)
 - Green: n well
- NMOS built on p wafer
 - Must add n material to build PMOS
Body Contact

- “Fourth terminal”
- Needed to set voltage around device
 - PMOS: $V_b = V_{dd}$
 - NMOS: $V_b = GND$
- At right: PMOS (orange) with bulk contact (dark green)
Body Contact

- Needed to set voltage around device
 - PMOS: $V_b = V_{dd}$
 - NMOS: $V_b = $ GND

- What happens if NMOS body contact is V_{dd}?
Body Contact

- Needed to set voltage around device
 - PMOS: $V_b = V_{dd}$
 - NMOS: $V_b = \text{GND}$

- What happens if NMOS body contact is V_{dd}?
 - Polarity of field wrong
 - Won’t invert channel
Transistor Geometry

NMOS

B S G D

P+ N+ N+

PMOS

D G S B

P+ P+ P+ N+

N Well

P Substrate
Interconnect

- Connect transistors
 - Different layers of metal
 - “Contact” - metal to transistor
 - “Via” - metal to metal
Interconnect

- Connect transistors
 - Different layers of metal
 - “Contact” - metal to transistor
 - “Via” - metal to metal
Interconnect Cross Section

- Passivation
- Dielectric
- Etch Stop Layer
- Dielectric Capping Layer
- Copper Conductor with Barrier/Nucleation Layer
- Pre-Metal Dielectric Tungsten Contact Plug
- Metal 1 Pitch

ITRS 2007
Masks

- Define areas want to see in layer
 - Think of “stencil” for material deposition

- Use photoresist (PR) to form the “stencil”
 - Expose PR through mask
 - PR dissolves in exposed area
 - Material is deposited
 - Only “sticks” in area w/ dissolved PR
Masking Process
Reverse Engineer Inverter Layout
Layout Revisited

- How to “decode” circuit from layout?
Reverse Engineer Inverter Layout

Power (Vdd)

GND
Reverse Engineer Inverter Layout

- Where is PMOS transistor?
- NMOS?
1. Identify transistors
Inverter Layout

- Where is Input?
Inverter Layout

- Where is Input?
Inverter Layout

- Where is Output?
Inverter Layout

- Where is Output?
Layout to Circuit

- 2. Add wires
Design Rules

- Why not adjacent transistors?
 - Plenty of empty space
 - If area is money, pack in as much as possible

- Recall: processing imprecise
 - Margin of error for process variation
Design Rules

- Contract between process engineer & designer
 - Minimum width/spacing
 - Can be (often are) process specific

- Lambda rules: scalable design rules
 - In terms of $\lambda = 0.5 L_{\text{min}} (L_{\text{drawn}})$
 - Can migrate designs from similar process
Design Rules: Some Examples

![Diagram showing design rules examples with labels: 2\(\lambda\), 3\(\lambda\), 6\(\lambda\), 1.5\(\lambda\), n doping, p doping, gate, metal 1, metal 2, via.]

Legend:
- Blue: contact
- Green: n doping
- Red: gate
- Orange: p doping
- Light Blue: metal 1
- Black: via
- Pink: metal 2

Penn ESE 370 Fall 2015 - Khanna
Layout #2 (practice)
Layout #2 (practice)

- How many transistors?
 - PMOS?
 - NMOS?
- How connected?
 - PMOS, NMOS?
- Inputs connected?
- Outputs?
- What is it?
Standard Cells

- Lay out gates so that heights match
 - Rows of adjacent cells
 - Standardized sizes

- Motivation: automated place and route
 - EDA tools convert HDL to layout
Standard Cell Area

All cells uniform height

Width of channel determined by routing

Cell area
Standard Cell Layout Example

Big Idea

- Layouts are physical realization of circuit
 - Geometry tradeoff
 - Can decrease spacing at the cost of yield
 - Design rules
 - Can go from circuit to layout or layout to circuit by inspection
Admin

- HW5 out
 - Due Wednesday
- Exam back on Friday