Today

- Layout
 - Transistors
 - Gates
- Design rules
- Standard cells

Transistor

- Sizing & positioning of transistors
- Designer controls W, L
- \(t_{ox} \) fixed for process
 - Sometimes thick/thin oxide “flavors”

NMOS Geometry

- Color scheme
 - Red: gate
 - Green: source and drain areas (n type diffusion)
NMOS vs PMOS
- NMOS built on p substrate
- PMOS built on n substrate
 - Needs an N-well

PMOS Geometry
- Color scheme
 - Red: gate
 - Orange: source and drain areas (p type)
 - Green: n well
- NMOS built on p wafer
 - Must add n material to build PMOS

Body Contact
- “Fourth terminal”
- Needed to set voltage around device
 - PMOS: $V_B = V_{dd}$
 - NMOS: $V_B = GND$
- At right: PMOS (orange) with bulk contact (dark green)

Body Contact
- Needed to set voltage around device
 - PMOS: $V_B = V_{dd}$
 - NMOS: $V_B = GND$
- What happens if NMOS body contact is V_{dd}?
 - Polarity of field wrong
 - Won’t invert channel

Transistor Geometry
Interconnect

- Connect transistors
 - Different layers of metal
 - "Contact" - metal to transistor
 - "Via" - metal to metal

Masks

- Define areas want to see in layer
 - Think of "stencil" for material deposition
- Use photoresist (PR) to form the "stencil"
 - Expose PR through mask
 - PR dissolves in exposed area
 - Material is deposited
 - Only "sticks" in area w/ dissolved PR

Reverse Engineer Inverter Layout
How to “decode” circuit from layout?

Where is PMOS transistor?
Where is NMOS?

1. Identify transistors

Where is Input?

Where is Input?
Inverter Layout

- Where is Output?

Layout to Circuit

- 2. Add wires
Design Rules

- Why not adjacent transistors?
 - Plenty of empty space
 - If area is money, pack in as much as possible
- Recall: processing imprecise
 - Margin of error for process variation

Design Rules

- Contract between process engineer & designer
 - Minimum width/spacing
 - Can be (often are) process specific
- Lambda rules: scalable design rules
 - In terms of $\lambda = 0.5 L_{\text{min}} \left(L_{\text{drawn}} \right)$
 - Can migrate designs from similar process

Design Rules: Some Examples

Layout #2 (practice)

- How many transistors?
 - PMOS?
 - NMOS?
- How connected?
 - PMOS, NMOS?
- Inputs connected?
- Outputs?
- What is it?

Standard Cells

- Lay out gates so that heights match
 - Rows of adjacent cells
 - Standardized sizes
- Motivation: automated place and route
 - EDA tools convert HDL to layout
Standard Cell Area

All cells uniform height

Width of channel determined by routing

Standard Cell Layout Example

Big Idea

- Layouts are physical realization of circuit
 - Geometry tradeoff
 - Can decrease spacing at the cost of yield
 - Design rules
 - Can go from circuit to layout or layout to circuit by inspection

Admin

- HW5 out
 - Due Wednesday
- Exam back on Friday