ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems

Lec 17: October 16, 2015
Energy Optimization
Ratioed Logic

Previously
- Three components of power
 - \(P_{tot} = P_{static} + P_{dy} + P_{sc} \)
- Restoration and Noise Margins
- CMOS Gates
 - Drive rail-to-rail
 - Only one transistor turned on in steady state
 - Only subthreshold current in steady state

Today
- Energy Tradeoffs
 - Reduce dynamic power
- Ratioed Logic
 - Break all the rules… (lose our nice properties)
 - Not rail-to-rail signals, steady-state-current…
 - Correctness
 - Performance
 - Power
 - Implications

Total Power
- \(P_{tot} = P_{static} + P_{sc} + P_{dy} \)
- \(P_{dy} + P_{sc} = a(\frac{1}{2}C_{load} + C_{sc})V^2f\)
- \(P_{tot} \approx a(\frac{1}{2}C_{load} + C_{sc})V^2f + Vf(W/L)e^{-Vc/(nkT)} \)

Dynamic Power

Switching Power
- \(P_{dy} = (\#_{trans}/\text{clock}) \frac{1}{2}CV^2f \)
- Let \(a = \text{activity factor} \)
 - \(a = \text{average } \#_{\text{tran}}/\text{clock} \)
- \(P_{dy} = a\frac{1}{2}CV^2f \)
- \(P_{sc} = aC_{sc}V^2f \)
Activity Factor

- Let $a =$ activity factor
- $a =$ average trans_{tr}/clock

$$a = \frac{p(\text{out}_t = 0)p(\text{out}_{t+1} = 1)}{2^n} = \frac{N_0 N_1}{2^n} = \frac{N_0 (2^N - N_0)}{2^{2N}}$$

Reduce Dynamic Power?

- $P_{\text{dyn}} = a^{1/2}CV^2f$
- How do we reduce dynamic power?

Reduce Activity Factor

Tree

- $a = p(\text{out}_t = 0)p(\text{out}_{t+1} = 1)$
- $a = \frac{N_0 N_1}{2^n} = \frac{N_0 (2^N - N_0)}{2^{2N}}$

Tree

- $a = p(\text{out}_t = 0)p(\text{out}_{t+1} = 1)$
- $a = \frac{N_0 N_1}{2^n} = \frac{N_0 (2^N - N_0)}{2^{2N}}$

Chain

- $a = p(\text{out}_t = 0)p(\text{out}_{t+1} = 1)$
- $a = \frac{N_0 N_1}{2^n} = \frac{N_0 (2^N - N_0)}{2^{2N}}$

Chain

- $a = p(\text{out}_t = 0)p(\text{out}_{t+1} = 1)$
- $a = \frac{N_0 N_1}{2^n} = \frac{N_0 (2^N - N_0)}{2^{2N}}$

Slow Down

- $P_{\text{dyn}} = a^{1/2}CV^2f$
- What happens to power contributions as we reduce clock frequency?
Slow Down

- \(P_{dyn} = a^{1/2}CV^2 f \)

- What happens to power contributions as we reduce clock frequency?
 - Example: CMOS circuit consumes equal dynamic and leakage power, \(P \). No short circuit power. The energy consumed in \(T \) seconds is \(2PT \).

- What suggest about \(V_{th} \)?

Example: CMOS circuit consumes equal dynamic and leakage power, \(P \). No short circuit power. The energy consumed in \(T \) seconds is \(2PT \).

New power: \((P/2 + P)2T = 3PT \)
- Increased power!

What does this suggest about \(V_{th} \)?

Reduce \(V_{dd} \)

- What happens as reduce \(V \)?
 - Energy?
 - Static
 - Switching
 - Delay?

Reminder:

- \(V_{dd}=1V, V_{thn}=|V_{thp}|=300mV \)

<table>
<thead>
<tr>
<th>(V_{in})</th>
<th>(I_{static})</th>
<th>(I_{dynamic})</th>
<th>(I_{sc})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0V</td>
<td>180pA</td>
<td>125nA</td>
<td></td>
</tr>
<tr>
<td>140mV</td>
<td>6nA</td>
<td>100nA</td>
<td></td>
</tr>
<tr>
<td>400mV</td>
<td>36nA</td>
<td>18nA</td>
<td></td>
</tr>
<tr>
<td>500mV</td>
<td>36nA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>600mV</td>
<td>36nA</td>
<td>18nA</td>
<td></td>
</tr>
<tr>
<td>860mV</td>
<td>6nA</td>
<td>100nA</td>
<td></td>
</tr>
<tr>
<td>1V</td>
<td>180pA</td>
<td>125nA</td>
<td></td>
</tr>
</tbody>
</table>

Reduce \(V_{dd} \):

- \(V_{dd}=520mV, V_{thn}=|V_{thp}|=300mV \)

<table>
<thead>
<tr>
<th>(V_{in})</th>
<th>(I_{static})</th>
<th>(I_{dynamic})</th>
<th>(I_{sc})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0V</td>
<td>180pA</td>
<td>39.6nA</td>
<td></td>
</tr>
<tr>
<td>140mV</td>
<td>6nA</td>
<td>14.4nA</td>
<td></td>
</tr>
<tr>
<td>260mV</td>
<td>111nA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>360mV</td>
<td>6nA</td>
<td>10.8nA</td>
<td></td>
</tr>
<tr>
<td>500mV</td>
<td>180pA</td>
<td>36nA</td>
<td></td>
</tr>
</tbody>
</table>
Reduce V (no velocity saturation)

- $\tau_{gd} = \frac{Q}{I} = \frac{(CV)}{I}$
- $I_d = \frac{\mu C_{ox}}{2}(W/L)(V_g - V_{TH})^2$
- τ_{gd} impact?
- $\tau_{gd} \propto \frac{1}{V}$

Ignoring leakage:

$E \propto V^2$

$E \tau^2 = Const$

Reduce V (velocity saturation)

- $\tau_{gd} = \frac{Q}{I} = \frac{(CV)}{I}$
- $I_d = \frac{\nu_{sat} C_{ox}}{2}(W/L)(V_{gs} - V_{TH} - V_{DSAT}/2)$

Reduce V_{dd} (velocity saturation)

- $V_{thn} = |V_{thp}| = 300mV, V_{in} = V_{dd}$, estimate E_T

<table>
<thead>
<tr>
<th>V_{dd}</th>
<th>I_{th}</th>
<th>t_{th}</th>
<th>E_{switch}</th>
<th>E_T</th>
</tr>
</thead>
<tbody>
<tr>
<td>1V</td>
<td>126uA</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>700mV</td>
<td>72uA</td>
<td>1.225</td>
<td>0.49</td>
<td>0.6</td>
</tr>
<tr>
<td>500mV</td>
<td>36uA</td>
<td>1.75</td>
<td>0.25</td>
<td>.437</td>
</tr>
<tr>
<td>350mV</td>
<td>9uA</td>
<td>4.9</td>
<td>0.12</td>
<td>.588</td>
</tr>
<tr>
<td>250mV</td>
<td>111nA</td>
<td>295</td>
<td>0.07</td>
<td>20.6</td>
</tr>
</tbody>
</table>

Reduce Short-Circuit Power?

- $P_{sc} = \frac{1}{2}C_{sc}V^2 f$

$E = V_{dd} \times I_{th} \times t_{th} \times \frac{1}{2}$

Increase V_{th}?

- What is impact of increasing threshold on
 - Delay?
 - Leakage?
Increase V_{th}

- $\tau_{gd} = \frac{Q}{I} = \frac{(CV)}{I}$
- $I_{ds} = (\nu_{sat} C_{ox})(W)(V_{gs}-V_{T_H}-V_{DSAT}/2)$

Increase V_{th}?

- What is impact of increasing threshold on
 - Delay?
 - Leakage?

<table>
<thead>
<tr>
<th>V_{dd}</th>
<th>V_{in}</th>
<th>I_{ds}</th>
</tr>
</thead>
<tbody>
<tr>
<td>300mV</td>
<td>326uA</td>
<td>1</td>
</tr>
<tr>
<td>460mV</td>
<td>97uA</td>
<td>1.3</td>
</tr>
<tr>
<td>600mV</td>
<td>72uA</td>
<td>1.75</td>
</tr>
</tbody>
</table>

Idea

- Tradeoff
 - Speed
 - Switching energy
 - Leakage energy
- Energy-Delay tradeoff: $E\tau^2$, Et

Ratioed Logic

Previously

- Restoration and Noise Margins
 - Allows for gate abstraction
- CMOS Gates
 - Drive outputs rail-to-rail
 - Only one transistor turned on in steady state
 - Only subthreshold leakage current in steady state

Today

- Ratioed Gates
 - Break all the rules… (nice properties)
 - No rail-to-rail outputs, steady-state-current is not subthreshold…
 - Logic correctness
 - Performance
 - Power
 - Implications
Idea

- Building both pull-up and pull-down can be expensive – many gates
- Seems wasteful to build logic function twice
 - Once in pullup, once in pulldown
 - Large gate capacitance

Maybe only need to build one

- Build NFET pulldown
 - Exploit high N mobility
 - traditional

Ratioed Inverter

- Does this work?
 - What is V_{out} for $V_{in} = Gnd$?
 - What is V_{out} for $V_{in} = V_{dd}$?

Ratioed Inverter in 22nm

Ratioed Inverter

- How do we need to size N to make it work?

Ratioed Inverter in 22nm
How do we need to size P to make it work?

P vs. N

Conclude: still prefer N to P for ratioed logic

Noise Margin Tradeoff

What is impact of increasing noise margin?
- On size
- On input capacitance

Worst-Case Output Drive Strength?

- R_{drive}
- $R_{\text{drive \ when \ input \ low}}$
- $R_{\text{drive \ when \ input \ high}}$
Ratioed Inverter Sizing

- What causes knee in curve at high end?

![DC Transfer Curve for Ratioed Inverter](image)

Non-VSAT Equations

- P looks roughly like current source
- Must Match current with N
 - Determine V_{ds}
 - How does W_n affect V_{ds}?

$$I_{DS} = \frac{\mu_n C_{ox}}{2} \left(\frac{W}{L} \right) \left[(V_{GS} - V_T) \right]^2$$

$$I_{DS} = \mu_n C_{ox} \left(\frac{W}{L} \right) \left[(V_{GS} - V_T) V_{DS} - \frac{V_{DS}^2}{2} \right]$$

Size for $R_o/2$ drive?

- How do we size for $R_o/2$ drive?

Power?

- I_{static}?
- Input low-Output high?
 - $I_{I_{leak}}$
- Input high-Output low?
 - $I_{pmos_{on}}$
 - $V_{dd}/(R_o/2)$ -- for our sample case

Compare Static CMOS

- For $R_{drive}=R_o/2$ inverter
 - Total Transistor Width?
 - Input capacitance load?

![Static CMOS Circuit](image)
Power

\[P_{\text{tot}} \approx a(\frac{1}{2}C_{\text{load}} + C_{\text{sc}})V^2f \]
\[+ p(V_{\text{out}}=\text{low})V^2/R_{\text{pun}} \]
\[+ (1-p(V_{\text{out}}=\text{low}))V_{\text{in}}(W/L)e^{V_{\text{t}}/(nkT/q)} \]

\(p(V_{\text{out}}=\text{low}) \) – probability the output is low

How size for \(R_{\text{pun}}/2 \) drive?

How size for \(R_{\text{pun}}/2 \) drive?

How size for \(R_{\text{pun}}/2 \) drive?

How size \(K \)-input nor?

When better than CMOS nor-\(k \)?

Better = smaller, lower input capacitance

Ideas

- There are other logic disciplines
- We have the tools to analyze
- Ratioed Logic
 - Tradeoff noise margin for
 - Reduced area
 - Capacitive load
 - Dissipates static power in one mode
Admin

- Project – Milestone due Wednesday
 - Should have read it already
 - Build and simulate baseline design over weekend
 - Ch 11 in textbook
 - Start list of optimizations to try
 - If don’t have list come to office hours ready to talk about it (Khanna: Monday, Giesen: Tuesday)

- Extra office hours next week on Thursday and Friday
 - Giesen: Thursday 6-8pm
 - Khanna: Friday 4-6pm