Outline

- Memory Arrays
- SRAM Architecture
 - SRAM Cell
 - Decoders
 - Column Circuitry
- Serial Access Memories

- You should be reading the book!! Ch 12.
Array Architecture

- 2^n words of 2^m bits each
- Good regularity – easy to design
- Very high density if good cells are used
Array Architecture

- 2^n words of 2^m bits each
- Good regularity – easy to design
- Very high density if good cells are used
Array Architecture

- 2^n words of 2^m bits each
- Good regularity – easy to design
- Very high density if good cells are used
6T SRAM Cell

- Cell size accounts for most of array size
 - Reduce cell size at expense of complexity
- 6T SRAM Cell
 - Used in most commercial chips
 - Data stored in cross-coupled inverters
- Read:
 - Precharge BL, BL’
 - Raise WL
- Write:
 - Drive data onto BL, BL’
 - Raise WL
SRAM Read

- Precharge both bitlines high
- Then turn on wordline, WL
- One of the two bitlines will be pulled down by the cell
- Ex: \(A = 0, A_b = 1 \)
 - BL discharges, BL’ stays high
 - But A bumps up slightly
- Read stability
 - A must not flip
 - \(N1 >> N2 \)

![Diagram of SRAM Read](image-url)
CMOS SRAM Analysis (Read)

Assume 1 is stored (Q=1)

\[
\frac{k_{n,M5}}{2} \left(\frac{V_{DD}}{2} - V_{Tn} \left(\frac{V_{DD}}{2} \right) \right)^2 = k_{n,M1} \left(\left(V_{DD} - |V_{Tn}| \right) \frac{V_{DD}}{2} - \frac{V_{DD}^2}{8} \right)
\]

\[
(W/L)_{n,M5} \leq 10 (W/L)_{n,M1} \quad \text{(supercedes read constraint)}
\]
SRAM Write

- Drive one bitline high, the other low
 - Depending on write data
- Then turn on wordline, WL
- Bitlines overpower cell with new value
- Example: A = 1, A_b = 0, BL = 0, BL’ = 1
 - Force A_b high, then A falls low
- Writability
 - Must overpower feedback inverter
 - N4 >> P2
CMOS SRAM Analysis (Write)

Assume 1 is stored

Write 0 to cell

\[k_{n,M6}\left(\left(\frac{V_{DD} - V_{Tn}}{2}\right) - \frac{V_{DD}^2}{8}\right) = k_{p,M4}\left(\left(\frac{V_{DD} - |V_{Tn}|}{2}\right) - \frac{V_{DD}^2}{8}\right) \]

\[\frac{i_{n,M5}}{2}\left(\frac{V_{DD}}{2} - \frac{V_{DD}^2}{2}\right)^2 = k_{n,M1}\left(\left(\frac{V_{DD} - |V_{Tn}|}{2}\right) - \frac{V_{DD}^2}{8}\right) \]

\[(W/L)_{n,M6} \geq 0.33 \ (W/L)_{p,M4} \]

\[(W/L)_{n,M5} \geq 10 \ (W/L)_{n,M1} \]

Penn ESE 370 Fall 2015 - Khanna
SRAM Column Example

Read

Write
Array Architecture

- 2^n words of 2^m bits each
- Good regularity – easy to design
- Very high density if good cells are used
Decoders

- $n:2^n$ decoder consists of 2^n n-input AND gates
 - One needed for each row of memory
 - Build AND from NAND or NOR gates

Static CMOS
Large Decoders

- For $n > 4$, NAND gates become slow
 - Break large gates into multiple smaller gates
Predecoding

- Many of these gates are redundant
 - Factor out common gates into predecoder
 - Saves area
 - Same path effort
Array Architecture

- 2^n words of 2^m bits each
- Good regularity – easy to design
- Very high density if good cells are used
Column Circuitry

- Some circuitry is required for each column
 - Bitline conditioning
 - Precharging, input data to bitline
 - Sense amplifiers
 - Column multiplexing (talked about last time)
Bitline Conditioning

- Precharge bitlines high before reads

\[\phi \]

BL BL'
Bitline Conditioning

- Precharge bitlines high before reads

![Diagram of BL and BL']

- What if pre-charged to Vdd/2?
 - Pros: reduces read-upset
 - Challenge: generate Vdd/2 voltage on chip
Sense Amplifiers

- Bitlines have many cells attached
 - Ex: 32-kbit SRAM has 128 rows x 256 cols
 - 128 cells on each bitline
- $t_{pd} \propto (C/I) \Delta V$
 - Even with shared diffusion contacts, 64C of diffusion capacitance (big C)
 - Discharged slowly through small transistors (small I)
- Sense amplifiers are triggered on small voltage swing (reduce ΔV)
Differential Pair Amp

- Differential pair requires no clock
- But always dissipates static power
Clocked Sense Amp

- Clocked sense amp saves power
- Requires sense_clk after enough bitline swing
- Isolation transistors cut off large bitline capacitance
Twisted Bitlines

- Sense amplifiers also amplify noise
 - Coupling noise is severe in modern processes
 - Try to couple equally onto bit and bit_b
 - Done by *twisting* bitlines

![Diagram showing twisted bitlines]
Serial Access Memories

- Serial access memories do not use an address
 - Shift Registers
 - Tapped Delay Lines
 - Serial In Parallel Out (SIPO)
 - Parallel In Serial Out (PISO)
 - Queues (FIFO, LIFO)
Shift Register

- *Shift registers* store and delay data
- Simple design: cascade of registers
Denser Shift Registers

- Flip-flops aren’t very area-efficient
- For large shift registers, keep data in SRAM instead
- Move read/write pointers to RAM rather than data
 - Initialize read address to first entry, write to last
 - Increment address on each cycle
Serial In Parallel Out

- 1-bit shift register reads in serial data
 - After N steps, presents N-bit parallel output
Parallel In Serial Out

- Load all N bits in parallel when $\text{shift} = 0$
 - Then shift one bit out per cycle
Queues

- Queues allow data to be read and written at different rates.
- Read and write each use their own clock, data
- Queue indicates whether it is full or empty
- Build with SRAM and read/write counters (pointers)
FIFO, LIFO Queues

- **First In First Out (FIFO)**
 - Initialize read and write pointers to first element
 - Queue is EMPTY
 - On write, increment write pointer
 - If write almost catches read, Queue is FULL
 - On read, increment read pointer

- **Last In First Out (LIFO)**
 - Also called a *stack*
 - Use a single *stack pointer* for read and write
Idea

- Memory for compact state storage
 - Minimize area per bit → maximize density
 - Requires careful sizing
- Share circuitry across many bits
 - Precharge, Amplifiers
- Serial address memories
 - Use pointers to access memory
 - Eg. FIFO queue
Admin

- Homework 7 due Wednesday
- Shuffling of assignment dates to give you more time
 - HW 8 due 11/23 (Lab summary and write up)
 - Proj 2.M due 11/25 (Wednesday before Thanksgiving)
 - Proj 2 due 12/2