ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems

Lec 28: November 13, 2015
RAM Periphery
Today

- Memory Periphery
 - Sensing
 - Decode
 - Column Drivers
Sensing
6T SRAM Memory bit
Simulation

Precharge 6T SRAM Read

WL
bit
notbit
BL
/BL

V

S

Penn ESE 370 Fall 2015 – Khanna
Sense Small Swings

- What do we have to worry about?
Sense Small Swings

- **Variation**
 - Shift where inverter “trip point” is

- **Systematic shifts that effect both bitlines**
 - “Common mode” noise
 - E.g.
 - Noise
 - Switching spikes on supplies
 - Capacitive cross talk
 - Voltage droop
Two Sense Amps

- Goal: amplify small signal difference
 reject common mode noise

Not Clocked Diff Amp

Clocked/Regenerative Feedback

Penn ESE 370 Fall 2015 – Khanna
Goal:
- Reject common shift

Differential Sense Amp
Warmup

- What does this do?
- How do we size transistor?
Voltage Controlled

- Consider V_{ctrl} as an analog input between 0 and $V_{\text{dd}} - V_{\text{th}}$
- What does this do?
- How does the voltage on V_{ctrl} control operation?
DC Transfer

*** spice deck for cell test_inv_ratio_vctrl{sch} from library test

![Graph showing In vs. Out with different Vctrl values](image)

Vctrl=0.2 (red)
Vctrl=0.3 (green dashed)
Vctrl=0.4 (blue dashed)
Vctrl=0.5 (magenta dashed)

Penn ESE 370 Fall 2015 – Khanna
Idea

- Control Resistance to control “trip point”
What does this do?

- Output when:
 - $\text{In}=\text{Gnd}$?
 - $\text{In}=V_{dd}$?
 - Transfer curve?
“Inverter”

- Input low
 - Pulls itself up
 - Until $V_{dd}-V_{TP}$
- Input high
 - Like ratioed device with V_{ctrl} low
DC Transfer Function
Differential Sense Amp
Differential Sense Amp

- “se” – sense enable
 - Inputs precharged to common value
 - After read operation is initiated, one bitline begins to drop
 - After bitlines have reached sufficient differential value, se is enabled and amplifier evaluates
Differential Sense Amp

- If “se” enabled, how does bottom transistor behave?
Differential Sense Amp
Differential Sense Amp
Differential Sense Amp
Diffamp Transfer Function

- looks like “inverter” with low gain in mid region
Differential Sense Amp

- “Inverter” output controls PMOS for second inverter
- Sets PMOS operating point
 - Voltage controlled resistance
 - Sets “trip point”
Differential Sense Amp

- What happens when
 - \(\text{in}=\text{in} \)?
Differential Sense Amp

- What happens when
 - $/\text{in} > \text{in}$?
 - $/\text{in} < \text{in}$?
Differential Sense Amp

- **View:**
 - “inverter” biases to operating point
Differential Sense Amp

- View:
 - “inverter” biases to operating point
 - Biasing sets V_{ctrl} for second inverter
 - Current mirror
 - Adjusts pull up resistance to set inverter “trip point”
DC Transfer $/in$ with $in=0.5V$

diffamp with in at 0.5V

diffamp out after inv

V_{out}

$V_{in} (\text{/in})$
DC Transfer Various ins

![diffamp with different ins](image)

- in 0.3V
- in 0.4V
- in 0.5V
- in 0.6V
- in 0.7V

Vout vs Vin (/in)
DC Transfer Various in

- What is trip point when:
 - \(I_n = 0.3\text{V} \)?
 - \(I_n = 0.4\text{V} \)?
 - \(I_n = 0.5\text{V} \)?
 - \(I_n = 0.6\text{V} \)?
 - \(I_n = 0.7\text{V} \)?
After Inverter

Inverter after diffamp with different ins

- in 0.5V
- in 0.3V
- in 0.7V

Vout

Vin (/in)
Differential Sense Amp

- Does need to be sized
- There is a ratioed logic effect here
 - NMOS must overcome pullup resistance
Regenerative Feedback

- bit-lines disconnected at sensing to avoid their high capacitive load
- The regenerative feedback loop is now isolated
- When sense clock is high the values stored in bit-lines are regenerated, while the lines are disconnected, speeding up response
Decode
Memory Bank
Row Select

- Compute inversions outside array
 - Just AND appropriate line (bit or /bit)
Row Select

- Share common terms
- Multi-level decode
Row Select

- Same number of lines
- Half as many AND inputs inside the row
Row Select: Precharge NAND
Row Select: Precharge NOR
Bitline Drivers
Tristate Driver
Tristate Drivers
Idea

- Minimize area of repeated cell
- Compensate with periphery
 - Amplification (regeneration/restoration)
- Match periphery pitch to cell row/column
 - Decode
 - Sensing
 - Writer Drivers
Admin

- **Monday: in Detkin Lab**
 - Attendance and participation mandatory!
 - Can’t get HW8 points without coming to lab
 - Read lab2 assignment and HW8 before coming to class
 - HW 8 due Monday 11/23

- **Project 2 Out**
 - A lot of work. Start now.
 - Can work in pairs, and extra credit possible
 - Milestone due Wednesday 11/25
 - Final report due Friday 12/4 ➡️ UPDATED