Today
- Memory Periphery
 - Sensing
 - Decode
 - Column Drivers
- Crosstalk
 - Characterization
 - Magnitude
 - Avoiding
 - Design practices

Decode: Row Select
- Compute inversions outside array
 - Just AND appropriate line (bit or /bit)

Row Select
- Share common terms
- Multi-level decode

Row Select: Precharge NAND
Row Select: Precharge NAND

Row Select: Precharge NOR

Row Select: Precharge NOR

Column Drivers: Memory Bank

Tristate Buffer

- Typically used for signal traveling, e.g. bus
- Ideally all devices connected to a bus should be disconnected except for active device reading or writing to bus
- Use high-impedance state to simulate disconnecting

<table>
<thead>
<tr>
<th>Input</th>
<th>En</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Z</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Z</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Active-high buffer

Tristate Buffer
Tristate Inverters

8x4 Memory with column decoder

Read/Write Memory

Crosstalk
Capacitance Everywhere
- Potentially a capacitor between any two conductors
 - On the chip
 - On the package
 - On the board
- All wires
 - Package pins
 - PCB traces
 - Cable wires
 - Bit/word lines

Capacitance
- There are capacitors everywhere
- Already talked about
 - Wires modeled as a distributed RC network
 - Parasitic capacitances between terminals on transistor

Capacitance Everywhere
- Potentially a capacitor between any two conductors
 - On the chip
 - On the package
 - On the board
- All wires
 - Package pins
 - PCB traces
 - Cable wires
 - Bit/word lines

Capacitance Everywhere
- Potentially a capacitor between any two conductors
 - On the chip
 - On the package
 - On the board
- All wires
 - Package pins
 - PCB traces
 - Cable wires
 - Bit/word lines

Wire Capacitance
- Changes in voltage on one wire may couple through parasitic capacitance to an adjacent wire

Wire step response
- Step response for isolated wire?
Undriven Adjacent Wire

- V_1 transitions from 0 to V
 - How big is the noise on V_2?

\[I(t) = C \frac{dV(t)}{dt} \]

\[C_1 \frac{d(V_1(t) - V_2(t))}{dt} = C_2 \frac{dV_2(t)}{dt} \]

\[C_1 V_1(t) = (C_1 + C_2) V_2 \]

SPICE $C_1 = 10\,\text{pF}$, $C_2 = 20\,\text{pF}$

Good (?) Capacitance

- High capacitance to ground plane
 - Limits node swing from adjacent conductors

\[V_2 = \left(\frac{C_1}{C_1 + C_2} \right) V_1 \]

Driven Adjacent Wire

- What happens when victim line is driven?
Driven Adjacent Wire

- What happens when victim line is driven?
 - Recovers with time constant: \(R_2(C_1 + C_2) \)

Magnitude of Noise on Driven Line

- Magnitude of diversion depends on relative time constants
 - \(\tau_1 << \tau_2 \)
 - \(\tau_1 >> \tau_2 \)
 - \(\tau_1 \sim \tau_2 \)

Spice: \(R_2 = 1\,\text{K}, \quad C_1 = 10\,\text{pF}, \quad C_2 = 20\,\text{pF} \)

Noise Implications

- So what if we have noise?
 - If the noise is less than the noise margin, nothing happens
 - Static CMOS logic will eventually settle to correct output even if disturbed by large noise spikes
 - But glitches cause extra delay
 - Also cause extra power from false transitions
 - Dynamic logic never recovers from glitches
 - Memories and other sensitive circuits also can produce the wrong answer
Wire Engineering

- Goal: achieve delay, area, power goals with acceptable noise
- Degrees of freedom:
 - Width
 - Spacing
 - Layer
 - Shielding

Idea

- Capacitance is everywhere
- Especially between adjacent wires
- Will get “noise” from crosstalk
- Clocked and driven wires
 - Slow down transitions
- Undriven wires voltage changed
- Can cause spurious transitions

Admin

- In lab on Friday
 - Attendance mandatory
 - Read lab handout in advance!
- HW 8 due Monday
- Proj2.M due Wednesday