Next few Lectures
- Saw in action in lab (last Friday)
- Where transmission lines arise?
- General wire formulation
- Lossless Transmission Line
- End of Transmission Line?
- Termination
- Discuss Lossy
- Implications

Where Transmission Lines Arise
- Cable: coaxial
- PCB
 - Strip line
 - Microstrip line
- Twisted Pair (Cat5)

Transmission Lines
- How did the coaxial cables behave in lab on Friday?
- How does this differ from
 - Ideal equipotential?
 - RC-wire on chip?

Transmission Lines
- This is what wires/cables look like
 - Aren't an ideal equipotential
 - Signals do take time to propagate
 - Maintain shape of input signal
 - Within limits
 - Shape and topology of wiring effects how signals propagate
Transmission Lines

- Need theory/model to support design
 - Reason about behavior
 - Understand what can cause noise
 - Engineer high performance/speed communication

Wires

- In general, our “wires” have distributed R, L, C components

RC Wire

- When R dominates L
 - We have the distributed RC Wires
 - Typical of on-chip wires in ICs
 - What is RC response to step?

Transmission Line

- When resistance is negligible
 - Have LC wire = Lossless Transmission Line
 - No energy dissipation (loss) through R’s
 - More typical of Printed Circuit Board wires and bond wires

Build Intuition from LC

- What did one LC do?
- What will chain do?
Build Intuition from LC

- What did one LC do?
- What will chain do?

Intuitive: Lossless

- Pulses travel as waves without distortion
 - (up to a characteristic frequency)

SPICE Simulation

Step Response SPICE

Pulse Response SPICE

Contrast RC Wire
Contrast

Model

- Now voltage is a function of time and position
 - Position along wire – distance from source
- Want to get $V(x,t)$
 - And $I(x,t)$

Setup Relations

- i is a node, x is distance from source, Δx is distance between nodes
- Position: $x=i \times \Delta x$
- So $V_j = V(x=i \Delta x)$

Setup Relations

- KCL @ V_i: $I_i - I_{i+1} = 0$
- $I_c = 0$
- $V_i \cdot V_{i+1} = 0$

Visualization

- RC Pulse:
- RLC Pulse:
Setup Relations

- **KCL @ \(V_i - l_{i-1} \):**
 \[I_i - I_{i-1} = C \frac{dV_i}{dt} \]

- **\(V_1 \):**
 \[V_1 = V_{i-1} - I_{i-1} \frac{dl_i}{dt} \]

- **\(V_{i-1} \):**
 \[V_{i-1} = -I_i \frac{dl_i}{dt} \]

i is a node, but has spatial dimension along the line.

\(V_i \) changes at different positions.

Reduce to Single Equation

- **Eliminate \(I_i \), \(I_{i-1} \):**
 \[\frac{dl_i}{dt} - \frac{dl_{i-1}}{dt} = C \frac{dV_i}{dt} \]

- **Eliminate \(I_i \):**
 \[\frac{dl_i}{dt} = C \frac{dV_i}{dt} \]

- **Take derivative with respect to time:**
 \[\frac{d^2V_i}{dt^2} = \frac{d^2V_i}{dt^2} \]

Eliminate \(I_{i-1} \), \(V_{i-1} \):

\[\frac{dV_i}{dt} = L \frac{dl_i}{dt} \]

\[\frac{dV_i}{dt} = L \frac{dl_i}{dt} \]

- **Eliminate \(I_i \):**
 \[\frac{dl_i}{dt} = L \frac{dV_i}{dt} \]

- **Eliminate \(I_{i-1} \):**
 \[\frac{dl_{i-1}}{dt} = L \frac{dV_i}{dt} \]
Implication

- Wave equation:
 \[
 \frac{\partial^2 V}{\partial x^2} = LC \frac{\partial^2 V}{\partial t^2}
 \]
- Solution:
 \[
 V(x, t) = A + Be^{x-wt}
 \]
- What is \(w \)?
 \[
 Be^{x-wt} = LCw^2Be^{x-wt}
 \]
 \[
 w = \frac{1}{\sqrt{LC}}
 \]

Light Cycle Example

- What is the position of a cycle at time \(t \)
 - Start at \(x=0 \)
 - Travel at speed \(v \)

- Light Cycle is step function at \(x=0 \)
 - Cycle creates trail of height 1
 - \(F(0, t=0)=1, F(x>0, t=0)=0 \Rightarrow F(x,t)=1-u(x) \)

- Light Cycle is step function at \(x=0 \)
 - Cycle creates trail of height 1
 - \(F(0, t=0)=1, F(x>0, t=0)=0 \Rightarrow F(x,t)=1-u(x) \)

Propagation Rate in Example

- \(L=1uH \)
- \(C=1pF \)
- What is \(w \)?
 \[
 w = \frac{1}{\sqrt{LC}}
 \]

TRON: Light Cycle Context

- http://www.youtube.com/watch?v=GNfs6v71eY
Signal Propagation

Delay linear in length

Contrast RC Wire

RC wire delay quadratic in length

Propogation

- Solution:
 \[V(x,t) = A + Be^{x-wt} \]
 - Rate of propagation, \(w \):
 \[w = \frac{1}{\sqrt{LC}} \]
 - Previously:
 \[c^2 = \frac{1}{\varepsilon_0\mu_0} \Rightarrow \]
 \[w = \frac{c}{\sqrt{\varepsilon_0\mu_0}} \]

Idea

- Signal propagates as wave down transmission line
 - Delay linear in wire length, if resistance negligible
 - Rate of propagation
 \[w = \frac{1}{\sqrt{LC}} = \frac{c}{\sqrt{\varepsilon_0\mu_0}} \]

Admin

- Back here on Monday
- Project 2 due Friday next week
- Happy Thanksgiving!