ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems

Lec 3: September 2, 2015
Gates from Transistors (concl) and Transistor Introduction (first order)

Previously on ESE 370...
- Zero order transistor model
 - Not ideal case, but simplified model for circuit analysis and design

Today!
- Transistor first order model
 - There are always R_s and C_s!

Preclass
- What voltage do the cases converge to?

Final Voltage?
- $R=1000 \text{ Ohm}$
- $C=10\text{pF}$
- V_{in}
- V_{measure}

Final Voltage?
- $R=1000 \text{ Ohm}$
- $C=1\text{nF}$
- V_{in}
- V_{measure}
Final Voltage?

- Bonus question: Which one will settle faster?

MOSFET – Zeroth Order Model

- Ideal Switch
 - $V_{GS} > V_{th}$ → switch is closed, conducts
 - $V_{GS} < V_{th}$ → switch is open, does not conduct
- Gate draws no current from input
 - Loads input capacitively (gate capacitance)

First Order Model

- Switch
 - Loads gate input capacitatively
 - C_{gs}
 - Has finite drive strength
 - R_{on}

Conclusion?

- DC/Steady-State
 - Ignore the capacitors
 - Look like “open circuit”
Buffer Gate (Source Follower)

- Is this a CMOS gate?

Buffer Gate (Source Follower)

- What is V_{OUT} for unloaded gate?

Graph showing:
- V_{in} connected to V_{out} with a resistor $R = 1 \Omega$.
- Equivalent circuit gate output stage.

Gate Output Load

- What happens to V_{out} when the output is loaded?

Graph showing:
- Equivalent circuit gate output stage.
- Load: $R = 1\Omega$, $R = 1000\Omega$.

Gate Output Resistive Load

- What happens when load is resistive? What is V_{OUT}?

Graph showing:
- Equivalent circuit gate output stage.
- Load: $R = 10\Omega$, $R = 1000\Omega$.

Gate Output Capacitive Load

- What happens when load is capacitive? What is V_{OUT}?

Graph showing:
- Equivalent circuit gate output stage.
- Load: $C = 1\text{pF}$.
Switch
- Loads gate input capacitively
- Draw no steady-state current
- Does not impact steady-state output voltage
- Has finite drive strength
- Could form voltage divider with resistive load
- Impacts settling time/Delay

First Order Model (I_D vs. V_GS)

First Order Model (I_D vs. V_DS)

CMOS Buffer Gate - First Order

Reminder: Zero-Order Model?

What happens when V_{in} = V_{dd} > V_{th}?

V_{GS} = 0 > V_{th,p}

V_{GS} = 0 < V_{th,n}

V_{GS} = V_G - V_S = V_{dd} > V_{th,p}

V_{GS} = V_G - V_S = V_{dd} < V_{th,n}

V_{GS} = V_{th,p}
Zero-Order Model to Set Switches

CMOS Buffer Gate - First Order

- Leaves an RC Circuit we can analyze

CMOS Buffer Gate - First Order

- Look at intermediary node V_2
 - Connected to output of stage 1 and input of stage 2

CMOS Buffer Gate - First Order

- What is equivalent circuit gate output for stage 1 driving V_2? What is load of output for stage 1?

CMOS Buffer Gate - First Order

- Stage 1 equivalent circuit gate output
- Load on V_2
 - Capacitive, input of stage 2

CMOS Buffer Gate - First Order

- Stage 1 equivalent circuit gate output
- Load on V_2
 - Capacitive, input of stage 2
What is settling time of V_2 when V_{in} switches from V_{DD} to 0?

First-Order Model

- Includes settling times/delay
- Quasistatic behavior
 - Steady-state enough
- Voltage settling with resistive loads
 - At least some basis for reasoning

What is still missing?

- What happens at intermediate voltages
 - Input is not rail-to-rail (not just ground or V_{dd} inputs)
- Details of dynamics, including...
 - Input transition is not a step
 - Intermediate drive strengths change with V_{GS}
- Sub-threshold operation
Design: Engineering Control

- V_{th}
 - Process engineer
- Drive strength (R_{on})
 - Circuit engineer
 - Control with sizing transistors
- Supply voltages (V_{dd})
 - Range set by process engineer
 - Detail use by circuit engineer

Wire Resistance

$R = \frac{\rho L}{A}$

- Sanity check
 - Wire twice as long = resistors in series
 - Wire twice as wide = resistors in parallel

Wire Capacitance

$C = \frac{\varepsilon d}{A}$

- Sanity check
 - Wire twice as long = capacitors in parallel
 - Wire twice as wide = capacitors in parallel

There are always Rs and Cs

- Every wire (connection) has resistance
- Every wire has capacitance
- (Every wire has inductance)
- Modeling vs. discrete components
- Dominant effects
 - $R_{big} + R_{small} \approx R_{big}$ ($R_{wire} << R_{on}$)
 - $C_{big} \parallel C_{small} \approx C_{big}$ ($C_{wire} << C_{g}$)
 - Today more likely ($C_{wire} >> C_{g}$)
Big Ideas

- MOSFET Transistor as switch
- Purpose-driven simplified modeling
 - Aid reasoning, sanity check, simplify design
- Analysis methodology
 - Zero order to understand switch state (logic)
 - First-order to get equivalent RC circuit (delay)
- New perspective on R_s and C_s

Admin

- Diagnostic grades recorded
 - Solutions posted online
 - Make sure you understand
 - Diagnose what you need to review and study