ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems

Lec 5: September 11, 2015
Delay and RC Response
Delay is RC Charging
Delay is RC Charging

Strategy:

- Use zero-order model to understand switch state
- Break into output/input stages
- For each stage
 - Understand R_{drive}
 - Understand C_{load}
Today

- RC Charging
 - RC Step Response Curve
- What is the C?
 - Capacitive Load on Gate Output
- What is the R?
 - Equivalent Output Resistance
- Approximating and Measuring Delay
90% Rise Time?

What is time constant, τ?
What does response look like?

~ 2ps for 90% rise
Governing Equations? (KCL)

- **KCL @ \(V_{\text{measure}} \)**
 - **Kirchoff’s Current Law**
 - Sum of all currents into a node = 0
 - Current entering a node = current exiting a node
KCL @ V_{measure}

- Kirchoff’s Current Law
 - Sum of all currents into a node = 0
 - Current entering a node = current exiting a node
- $I_R = I_C$
Governing Equations? (KCL)

\[I_R = I_C \]

\[\frac{V_R}{R} = C \frac{dV_C}{dt} \]

\[\frac{V_{in} - V_{measure}}{R} = C \frac{dV_{measure}}{dt} \]
Governing Equations? (KCL)

\[I_R = I_C \]

\[\frac{V_R}{R} = C \frac{dV_C}{dt} \]

\[\frac{V_{in} - V_{measure}}{R} = C \frac{dV_{measure}}{dt} \]

\[0 = \frac{dV_{measure}}{dt} + \frac{1}{RC} V_{measure} - \frac{V_{in}}{RC} \]

\[V_{measure} = V_{in} \left(1 - \left(e^{-t/\tau} \right) \right) \]

\[\tau = RC \]
What does look like?

\[V_{\text{measure}} = V_{\text{in}} \left(1 - \left(e^{-t/RC} \right) \right) \]
Shape of Curve

<table>
<thead>
<tr>
<th>$t \text{ (in ps)}$</th>
<th>$e^{-t/RC}$</th>
<th>$1-e^{-t/RC}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$V_{in} = 1$

$V_{measure} = V_{in} \left(1 - \left(e^{-t/RC}\right)\right)$
Shape of Curve

<table>
<thead>
<tr>
<th>t (in ps)</th>
<th>$e^{-t/RC}$</th>
<th>$1-e^{-t/RC}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0.1</td>
<td>0.9</td>
<td>0.1 10%</td>
</tr>
<tr>
<td>1</td>
<td>$1/e = 0.37$</td>
<td>0.66</td>
</tr>
<tr>
<td>2</td>
<td>$1/e^2 = 0.14$</td>
<td>0.86</td>
</tr>
<tr>
<td>2.3</td>
<td>0.1</td>
<td>0.9 90%</td>
</tr>
</tbody>
</table>

$V_{\text{in}} = 1$

$V_{\text{measure}} = V_{\text{in}} \left(1 - \left(e^{-t/RC}\right)\right)$
Rise Time: 10—90%

$T_{\text{rise}} \sim= 2.2 \text{ps} \sim= 2.2 \tau$
Rise Time: 10—90%

\[\tau = RC \]

\[T_{\text{rise}} \sim 2.2 \text{ps} \sim 2.2 \tau \]
What is C?
Capacitance

- Wire
- Fanout -- Total gate load
 - Logical Gate
 - MOSFET gate
Fanout

- Number of things to which a gate output connects
Fanout in Circuit

- Output routed to many gate inputs
Fanout in Circuit

- Maximum fanout?
- Second?
- Min?
Fanout in Circuit

- Maximum fanout?
- Second?
- Min?
Fanout in Circuit

- Maximum fanout?
- Second?
- Min?
Fanout in Circuit

- Maximum fanout?
- Second?
- Min?
Fanout in Circuit

- Maximum fanout?
- Second?
- Min?
MOSFET Capacitance

- "load of 1"?
- Capacitive
First Order Model

- **Switch**
 - **Loads input capacitively**
MOSFET Capacitance

- “load of 1”?
 - Capacitive
First Order Model

Switch

- Loads input capacitively

As we dig into the device structure understand:

- Origin of capacitance
- How to engineer device parameters like C_g, R_{ON}, V_{th}
- Tradeoffs
Lumped Capacitive Load

\[C_{\text{load}} = \sum_{i \in \text{fanout}} C_{g_i} + \sum_{i \in \text{wires}} C_{w_i} \]
What is R?
Resistance

- Wire resistance
 - From supply (Vdd or Gnd) to transistor source
 - From transistor output to gate it is driving
- Transistor equivalent resistance (R_{on})
First Order Model

Switch

- Resistive driver

As we dig into the device structure understand:

- More sophisticated view, not just R\(_{\text{ON}}\)
- How to engineer device parameters like C\(_{\text{g}}\), R\(_{\text{ON}}\), V\(_{\text{th}}\)
- Tradeoffs
Equivalent Resistance
What resistances might transistors contribute?

- How many cases?
- Assume $R_{on} = R_{on,p} = R_{on,n}$
What resistances might transistors contribute?

- How many cases?
- Assume $R_{on} = R_{on,p} = R_{on,n}$

<table>
<thead>
<tr>
<th>Input</th>
<th>Rout</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td></td>
</tr>
<tr>
<td>01</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>
What resistances might transistors contribute?

- How many cases?
- Assume $R_{on} = R_{on,p} = R_{on,n}$

<table>
<thead>
<tr>
<th>Input</th>
<th>Rout</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>$R_{on}/2$</td>
</tr>
<tr>
<td>01</td>
<td>R_{on}</td>
</tr>
<tr>
<td>10</td>
<td>R_{on}</td>
</tr>
<tr>
<td>11</td>
<td>$2R_{on}$</td>
</tr>
</tbody>
</table>
Rise and Fall time may differ
- Why?
- What is ratio?

<table>
<thead>
<tr>
<th>Input</th>
<th>Rout</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>$R_{on}/2$</td>
</tr>
<tr>
<td>01</td>
<td>R_{on}</td>
</tr>
<tr>
<td>10</td>
<td>R_{on}</td>
</tr>
<tr>
<td>11</td>
<td>$2R_{on}$</td>
</tr>
</tbody>
</table>
Lumped Resistive Source

\[R_{drive} = R_{tr,net} + \sum_{i \in wires} R_{w_i} \]

\(R_{tr,net} = \) transistor network resistance = parallel and series combination of \(R_{tr} \)
Voltage Waveform at Input/Output Node

R_{drive} from output stages and wires

C_{Load} from input stages and wires

- Diagram of logic gates representing the signal flow.
Measuring Delay
Measuring Gate Delay

- Next stage starts to switch before first finishes
- Measure from 50% of input swing to 50% of output swing

\[t_{del} = 13\text{ps} \]
Characterizing Gate/Technology

- Delay measure will be
 - Function of load on gate
 - Function of input rise time
 - Which, in turn, may be a function of input loading
Delay vs. Risetime

If we didn’t know the input rise time, we wouldn’t know what a 13ps delay meant.

- 1ps rise (fast rise)
- 100ps rise (slow rise)
- 10ps delay
- 20ps delay
Characterizing Gate/Technology

- Delay measure will be
 - Function of load on gate
 - Function of input rise time
 - Which, in turn, may be a function of input loading
- Want to understand typical delay times
 - Allows us to compare designs with a (somewhat) normalized delay metric
Standard Measurement for Characterization

- Drive with a gate
 - Not an ideal source
 - Input rise time typically would see in circuit
- Measure loaded gate
 - Typical loading – FO4

Diagram:
- Function Generator
- Gate
- Oscilloscope

Not realistic measurement
HW3 Measurement Setup
Measurement for Characterization

- Drive with a gate
 - Not an ideal source (how does delay change if drive is ideal?)
 - Input rise time typically would see in circuit
- Measure loaded gate
 - Typical loading – FO4
Measurement for Characterization

- Drive with a gate
 - **Not** an ideal source
 - Input rise time typically would see in circuit

- Measure loaded gate
 - Typical loading – FO4 (how does delay change if gate is unloaded?)

Penn ESE370 Fall2015 – Khanna
Delay is RC Charging
“Normal Week”
- 3 Lecture Week (all here)
- MOS Operation and Devices

Spice Flow
- access to electric, setup for spice, run ngspice
Admin

- “Normal Week”
 - 3 Lecture Week (all here)
 - MOS Operation and Devices

- Spice Flow
 - access to electric, setup for spice, run ngspice

- HW quality
 - Show your work
 - Label axes, explain your results
 - If we can’t understand it, we can’t grade it

- HW turnin
 - Must turn in by the time I start lecturing (12:05)
 - Won’t accept any more after that