ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems

Lee 6: September 14, 2015
MOS Model

You are Here: Transistor Edition
- Previously: simple models (0 and 1st order)
 - Comfortable with basic functions and circuits
- This week and next (4 lectures)
 - Detailed semiconductor discussion
 - MOSFET phenomenology
 - Don’t Blink!
- Rest of term
 - Implications of the MOS device

Today
- MOS Structure
- Basic Fabrication
- Semiconductor Physics
 - Metals, insulators
 - Silicon lattice
 - Band gaps
 - Doping
 - Field Effects

MOS
- Metal Oxide Semiconductor

MOS
- Metal – gate
- Oxide – insulator separating gate from semiconductor
 - Ideally: no conduction from gate to semiconductor
- Semiconductor – between source and drain
- See why gate input capacitive?

Capacitor
- Charge distribution and field?
- How much charge on plates?
Idea

- Semiconductor – can behave as metal or insulator
- Voltage on gate induces an electrical field
- Induced field attracts (repels) charge in semiconductor to form a channel
 - Semiconductor can be switched between conducting and not conducting
 - Hence “Field-Effect” Transistor

Source/Drain Contacts

- Contacts: Conductors ➔ metallic
 - Connect to metal wires that connect transistors

Fabrication

- Start with Silicon wafer
- Dope
- Grow Oxide (SiO_2)
- Deposit Metal
- Mask/Etch to define where features go

Dimensions

- Channel Length (L)
- Channel Width (W)
- Oxide Thickness (T_{ox})
- Process named by minimum length
 - $22\text{nm} \rightarrow L=22\text{nm}$

Conduction

- Metal – conducts
- Insulator – does not conduct
- Semiconductor – can act as either
Why does metal conduct?

Conduction
- Electrons move
- Must be able to “remove” electron from atom or molecule

Atomic States
- Quantized Energy Levels (bands)
 - Valence and Conduction Bands
- Must have enough energy to change level (state)

Thermal Energy
- Except at absolute 0
 - There is always free energy
 - Causes electrons to hop around
 - …when there is enough energy to change states
 - Energy gap between states determines energy required

Silicon Atom
- How many valence electrons?
Silicon

- 4 valence electrons
 - Inner shells filled
 - Only outer shells contribute to chemical interactions

Silicon-Silicon Bonding

- Can form covalent bonds with 4 other silicon atoms

Silicon Lattice

- Forms into crystal lattice

Silicon Ingot

1 impurity atom per 10 billion silicon atoms

Silicon Lattice

- Cartoon two-dimensional view

Outer Orbital?

- What happens to outer shell in Silicon lattice?
Energy?

- What does this say about energy to move electron?

Energy State View

Valance Band – all states filled

Energy State View

Conduction Band – all states empty

Energy State View

Valance Band – all states filled

Band Gap and Conduction

- Insulator: \(E_v \), \(8\text{ev} \) to \(E_c \)
- Metal: \(E_v \) to \(E_c \)
- OR
- Semiconductor: \(E_v \) to \(1.1\text{ev} \) to \(E_c \)

Doping

- Add impurities to Silicon Lattice
 - Replace a Si atom at a lattice site with another

Doping

- Add impurities to Silicon Lattice
 - Replace a Si atom at a lattice site with another
- E.g. add a Group 15 element
 - E.g. P (Phosphorus)
 - How many valence electrons?

How many valence electrons?

Doping with P

End up with extra electrons
- Donor electrons
- Not tightly bound to atom
 - Low energy to displace
 - Easy for these electrons to move

Doped Band Gaps

- Addition of donor electrons makes more metallic
 - Easier to conduct

Electron is localized
- Won’t go far if no low energy states nearby
- Increasing doping concentration
 - Ratio of P atoms to Si atoms
 - Decreases energy to conduct
Electron Conduction

Capacitor Charge

- Remember capacitor charge

MOS Field?

- What does “capacitor” field do to the Donor-doped semiconductor channel?

- What does “capacitor” field do to the Donor-doped semiconductor channel?

- What does “capacitor” field do to the Donor-doped semiconductor channel?

- What does “capacitor” field do to the Donor-doped semiconductor channel?
MOS Field Effect
- Charge on capacitor
 - Attract or repel charges to form channel
 - Modulates conduction
 - Positive
 - Attracts carriers
 - Enables conduction
 - Negative
 - Repels carriers
 - Disable conduction

Group 13
- What happens if we replace Si atoms with group 13 atom instead?
 - E.g. B (Boron)
 - Valence band electrons

Doping with B
- End up with electron vacancies -- Holes
 - Acceptor electron sites
- Easy for electrons to shift into these sites
 - Low energy to displace
 - Easy for the electrons to move
 - Movement of an electron best viewed as movement of hole

Hole Conduction

Doped Band Gaps
- Addition of acceptor sites makes more metallic
 - Easier to conduct

Field Effect?
- Effect of positive field on Acceptor-doped Silicon?
Field Effect?

- Effect of positive field on Acceptor-doped Silicon?

\[V_{gs} = 0 \]

No field

\[+ + + + \]

\[V_{op} > 0 \]

\[+ + + + \]

= No conduction

Field Effect?

- Effect of negative field on Acceptor-doped Silicon?

\[V_{gs} = 0 \]

No field

\[+ + + + \]

\[V_{op} < 0 \]

\[+ + + + \]

= Conduction

MOSFETs

- Donor doping
 - Excess electrons
 - Negative or N-type material
 - NFET
- Acceptor doping
 - Excess holes
 - Positive or P-type material
 - PFET

MOSFET

- Semiconductor can act like metal or insulator
- Use field to modulate conduction state of semiconductor