Lec 7: September 16, 2015
MOS Transistor Operating Regions
Part 1
Today

- PN Junction
- MOS Transistor Topology
- Threshold
- Operating Regions
 - Resistive
 - Saturation
 - Subthreshold (next class)
 - Velocity Saturation (next class)
Last Time – MOS model
Refinement

- Depletion region \rightarrow excess carriers depleted
Bulk/Body Contact

- MOS actually has four contacts
- Also effects fields
- Usually common across transistors
 - Gnd for nmos, V_{dd} for pmos
No Field

- $V_{GS}=0$, $V_{DS}=0$
Apply $V_{GS} > 0$

- Accumulate negative charge
 - Repel holes (fill holes)
Channel Evolution -- Increasing V_{gs}

The diagrams illustrate the channel evolution in a MOSFET as the gate voltage (V_{gs}) increases. The depletion region expands from the initial state (left) to a fully depleted state (right) as V_{gs} is increased. The depletion region is indicated by a darker shade of green in the n^+ regions of the p-substrate.
Gate Capacitance

Changes based on operating region.
Gate Capacitance

- Depletion capacitance dependent on width of depletion region and potential at oxide-silicon border
Channel Evolution -- Increasing Vgs
Inversion

- Surface builds electrons
 - Inverts to n-type
 - Draws electrons from n\(^+\) source terminal
Threshold

- Voltage where strong inversion occurs → threshold voltage
 - $V_{th} \approx 2\phi_F$
 - Engineer by controlling doping (N_A) $\phi_F = \phi_T \ln\left(\frac{N_A}{n_i}\right)$
Linear Region
Linear Region

- $V_{GS} > V_{th}$ and V_{DS} small

$$C_{OX} = \frac{\varepsilon_{OX}}{t_{OX}}$$

$$I_{DS} = \mu_n C_{OX} \left(\frac{W}{L} \right) \left[(V_{GS} - V_{th}) V_{DS} - \frac{V_{DS}^2}{2} \right]$$
Linear Region

- $V_{GS} > V_{th}$ and V_{DS} small
- V_{GS} fixed \rightarrow looks like resistor
 - Current linear in V_{DS}

\[
I_{DS} = \mu_n C_{OX} \left(\frac{W}{L} \right) \left[(V_{GS} - V_{th}) V_{DS} - \frac{V_{DS}^2}{2} \right]
\]

\[
I_{DS} \approx \mu_n C_{OX} \left(\frac{W}{L} \right) (V_{GS} - V_{th}) V_{DS}
\]

\[
I_{DS} \propto V_{DS}
\]
MOSFET – IV Characteristics

\[V_{DS} < V_{GS} - V_{TH} \]

\[V_{DS} \geq V_{GS} - V_{TH} \]

\[V_{GS} - V_{th} = 7 \text{ V} \]

\[V_{GS} - V_{th} = 6 \text{ V} \]

\[V_{GS} - V_{th} = 5 \text{ V} \]

\[V_{GS} - V_{th} = 3 \text{ V} \]

\[V_{GS} - V_{th} = 2 \text{ V} \]

\[V_{GS} - V_{th} = 1 \text{ V} \]
Dimensions

- Channel Length (L)
- Channel Width (W)
- Oxide Thickness (T_{ox})
Preclass

- I_{ds} for identical transistors in parallel?
I\textsubscript{ds} for identical transistors in series?
- (V\textsubscript{ds} small)
Transistor Strength (W/L)

\[C_{OX} = \frac{\varepsilon_{OX}}{t_{OX}} \]

\[I_{DS} = \mu_n C_{OX} \left(\frac{W}{L} \right) \left[(V_{GS} - V_{th}) V_{DS} - \frac{V_{DS}^2}{2} \right] \]
Transistor Strength (W/L)

- Shape dependence match Resistance intuition
 - Wider = parallel resistors \rightarrow decrease R
 - Longer = series resistors \rightarrow increase R

\[R = \frac{\rho L}{A} \]

\[I_{DS} = \mu_n C_{OX} \left(\frac{W}{L} \right) \left[(V_{GS} - V_{th}) V_{DS} - \frac{V_{DS}^2}{2} \right] \]
\(L_{\text{drawn}} \) vs. \(L_{\text{effective}} \)

- Doping not perfectly straight
- Spreads under gate
- Effective \(L \) smaller than draw gate width
Channel Voltage

- Voltage varies along channel
- Think of channel as resistor
What is voltage in the middle of a resistive medium?
(halfway between terminals)
Voltage in Channel

- Think of channel as resistive medium
 - Length = L
 - Area = Width * Depth (inversion)
- What is voltage in the middle of the channel?
 - L/2 from S and D?
Channel Voltage

- Voltage varies along channel
- If think of channel as resistor
 - Serves as a voltage divider between V_S and V_D
Voltage along Channel

- What does voltage along the channel look like?

\[V(x) \]

\[x = 0 \quad x = L \]
What does voltage along the channel look like?
What does voltage along the channel look like?

\[V(x) = V_d \]

Voltage along Channel

\[x = 0 \quad x = L \]

p-substrate

depletion region

G

S

D

n^+
What does voltage along the channel look like?

\[V(x) = V_d \]

\[V_s \]

\[x = 0 \]
\[x = L \]
Channel Field

- When voltage gap $V_G - V_x$ drops below V_{th}, drops out of inversion
 - If $V_{DS} = V_{GS} - V_{th}$, then $V_{DS} - V_{GS} = V_{th}$
Channel Field

- When voltage gap $V_G - V_x$ drops below V_{th}, drops out of inversion
 - What if $V_{DS} > V_{GS} - V_{th} \Rightarrow V_{DS} - V_{GS} > V_{th}$?
 - Upper limit on current, channel is “pinched off”
Pinch Off

- When voltage along the channel drops below V_{th}, the channel drops out of inversion
 - Occurs when: $V_{GS} - V_{DS} < V_T \Rightarrow V_{DS} > V_{GS} - V_{th}$

- Conclusion:
 - Current cannot increase with V_{DS} once $V_{DS} > V_{GS} - V_T$
Saturation

- In saturation, $V_{DS\text{-effective}} = V_x = V_{GS} - V_T$

$$I_{DS} = \mu_n C_{OX} \left(\frac{W}{L} \right) \left[(V_{GS} - V_T) V_{DS} - \frac{V_{DS}^2}{2} \right]$$

- Becomes:

$$I_{DS} = \mu_n C_{OX} \left(\frac{W}{L} \right) \left[(V_{GS} - V_T)^2 - \frac{(V_{GS} - V_T)^2}{2} \right]$$

$$I_{DS} = \frac{\mu_n C_{OX}}{2} \left(\frac{W}{L} \right) \left[(V_{GS} - V_T)^2 \right]$$
MOSFET – IV Characteristics

\[V_{DS} < V_{GS} - V_{TH} \] linear region

\[V_{DS} \geq V_{GS} - V_{TH} \] saturation region

\[V_{GS} - V_{th} = 7 \text{ V} \]

\[V_{GS} - V_{th} = 6 \text{ V} \]

\[V_{GS} - V_{th} = 5 \text{ V} \]

\[V_{GS} - V_{th} = 3 \text{ V} \]

\[V_{GS} - V_{th} = 2 \text{ V} \]

\[V_{GS} - V_{th} = 1 \text{ V} \]
Approach

- Identify Region
- Drives governing equations
 - See preclass reference
- Use region and equations to understand operation
Big Idea

- 3 Regions of operation for MOSFET
 - Subthreshold
 - Linear
 - Saturation
Admin

- Text 3.3.2 – highly recommend read!!
 - Second half on Friday
- HW4 out
 - Get started over weekend
 - Long and time-consuming