ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems

Lec 10: September 27, 2021 MOS Transistor Variation

$$I_{D} = \begin{cases} I_{S}\left(\frac{W}{L}\right)e^{\left(\frac{V_{GS}-V_{Tn}}{nkT/q}\right)} & V_{GS} \leq V_{Tn} & \text{Subthreshold} \\ \frac{\mu_{n} \cdot C_{ox}}{2}\left(\frac{W}{L}\right)(2(V_{GS}-V_{Tn})V_{DS}-V_{DS}^{2}) & V_{GS} > V_{Tn}, V_{DS} < V_{GS} - V_{Tn} & \text{Linear} \\ \frac{\mu_{n} \cdot C_{ox}}{2}\left(\frac{W}{L}\right)(V_{GS}-V_{Tn})^{2} & V_{GS} > V_{Tn}, V_{DS} \geq V_{GS} - V_{Tn} & \text{Saturation} \\ \approx v_{sat}C_{ox}W\left(V_{GS}-V_{Tn}-\frac{V_{dsat}}{2}\right) & E_{y} > E_{cn} & \text{Velocity Saturation} \end{cases}$$

$$I_{D} = \begin{cases} I_{S}\left(\frac{W}{L}\right)e^{\left(\frac{V_{GS}-V_{Tp}}{nkT/q}\right)} & V_{GS} \ge V_{Tp} & \text{Subthreshold} \\ \frac{\mu_{p} \cdot C_{ox}}{2}\left(\frac{W}{L}\right)\left(2\left(V_{GS}-V_{Tp}\right)V_{DS}-V_{DS}^{2}\right) & V_{GS} < V_{Tp}, V_{DS} > V_{GS} - V_{Tp} & \text{Linear} \\ \frac{\mu_{p} \cdot C_{ox}}{2}\left(\frac{W}{L}\right)\left(V_{GS}-V_{Tp}\right)^{2} & V_{GS} < V_{Tp}, V_{DS} \le V_{GS} - V_{Tp} & \text{Saturation} \\ \approx v_{sat}C_{ox}W\left(V_{GS}-V_{Tp}-\frac{V_{dsat}}{2}\right) & E_{y} > E_{cp} & \text{Velocity Saturation} \end{cases}$$

- Understand how to model transistor behavior
- Given that we know its parameters
 - V_{dd} , V_{th} , C_{OX} , W, L, μ ...

- □ We don't know its parameters (perfectly)
 - Fabrication parameters have nominal values and error range
 - Impact on I_{ds}?
- Identically drawn devices differ because of fabrication techniques (e.g. process mismatch)
- Parameters change with environment (e.g. Temperature)
- □ Parameters change with time (aging)

- Sources of Variation
 - Fabrication
 - Operation
 - Aging
- Designing to Account for Variation
 - Margin
 - Corners
 - Binning

Fabrication

- Many reasons why variation occurs and shows up in different ways
- Scales of variation
 - Wafer-to-wafer, die-to-die, transistor-to-transistor
- Correlations of variation
 - Systematic, spatial, random (uncorrelated)

Scale of Variations

Die-to-Die (D2D) Variations

Va Systematic

Variations : (Uncorrelated) Random

Within-Die (WID)

Wafer Scale

Die Scale

Feature Scale

Source: Noel Menezes, Intel ISPD2007

Basic Fabrication: Two Steps

- (1) Transfer an image of the design to the wafer
- (2) Using that image (mask) as a guide, create the desired layers on silicon
 - Diffusion (add dopants to the silicon)
 - Oxide (create an insulating layer)
 - Metal (create a wire layer)

- Oxide thickness
- Doping level
- Layer alignment
- Growth and Etch rates and times
 - Depend on chemical concentrations
 - How precisely can we control those?
- Vary machine-to-machine, day-to-day
- □ Impact all transistors on wafer

Ldrawn

G

Leffective

D

n⁺

S

n⁺

- Parameters change consistently across wafer or chip based on location
- Sources
 - Chemical-Mechanical Polishing (CMP)
 - Dishing
 - Lens distortion

Random Transistor-to-Transistor

- Random dopant fluctuation
- Local oxide variation
- Line edge roughness
- Etch and growth rates
- **Transistors differ from each other in random ways**

[Bernstein et al, IBM JRD 2006] ¹⁴

Oxide Thickness and Interface roughness

[Asenov et al. TRED 2002]

Fig. 1. (a) Typical profile of the random Si/SiO₂ interface in a $30 \times 30 \text{ nm}^2$ MOSFET, followed by (b) an equiconcentration contour obtained from DG 15 simulations, and (c) the potential distribution.

From: http://www.microtechweb.com/2d/lw_pict.htm

Line Edge & Line-Width Roughness

- LER = lines of device features are not straight
- LWR = distance between lines is not uniform
- LER & LWR arise from the lithography and etching processes
- They are most pronounced in polygate patterning

Scale of Variations

Die-to-Die (D2D) Variations

Va Systematic

Variations c (Uncorrelated) Random

Within-Die (WID)

Wafer Scale

Die Scale

Feature Scale

Source: Noel Menezes, Intel ISPD2007

- Changes parameters
 - W, L, t_{OX} , V_{th} , etc.
- Change transistor behavior
 - W increase?
 - L increase?
 - t_{OX} increase?
 - V_{th} increase?

$$I_{DS} \approx v_{sat} C_{OX} W \left(V_{GS} - V_T - \frac{V_{DSAT}}{2} \right)$$
$$I_{DS} = \mu_n C_{OX} \left(\frac{W}{L} \right) \left[\left(V_{GS} - V_T \right) V_{DS} - \frac{V_{DS}^2}{2} \right]$$

- $\hfill\square$ Many physical effects impact V_{th}
 - Doping, dimensions, roughness
- $\hfill\square$ Behavior highly dependent on V_{th}

$$I_{DS} \approx v_{sat} C_{OX} W \left(V_{GS} - V_T - \frac{V_{DSAT}}{2} \right)$$

$$I_{DS} = I_{S}^{\prime} \left(\frac{W}{L}\right) e^{\left(\frac{V_{GS} - V_{T}}{nkT/q}\right)}$$

[Bernstein et al, IBM JRD 2006]

\Box Higher V_{th} ?

- Not drive as strongly
- $I_{d,vsat} \propto (V_{gs} V_{th})$
- Performance?

$\Box \text{ Higher } V_{th} \rightarrow \text{lower } I_{ds} \rightarrow \text{Delay } (R_{on} * C_{load})?$

 $\Box \text{ Higher } V_{th} \rightarrow \text{lower } I_{ds} \rightarrow \text{Delay } (R_{on} * C_{load})?$

 \Box Lower V_{th}?

• Not turn off as well \rightarrow leaks more

Operation

Temperature Voltage

- Different ambient environments
 - January in Maine
 - July in Philly
 - Air conditioned machine room
- □ Self heat from activity of chip
- Quality of heat sink (attachment thereof)
 - E.g cooling fan

Thermal Profile for Processor

Penn ESE 370 Fall 2021 - Khanna

[Reda/IEEE Tr Emerging CAS v1n2 2011]

How does temperature impact on-current?

- High temperature
 - More free thermal energy
 - Easier to conduct
 - Lowers V_{th}
 - Increase rate of collision
 - Lower saturation velocity
 - Lower saturation voltage
 - Lower peak $I_{ds} \rightarrow$ slows down
- One reason don't want chips to run hot

Temperature Impact on Ids

Temperature Impact on Ids

How does temp impact leakage current?

 \square High temperature lowers V_{th}

$$I_{DS} = I_{S}^{\prime} \left(\frac{W}{L}\right) e^{\left(\frac{V_{GS} - V_{T}}{nkT/q}\right)}$$

- Power supply isn't perfect
- Differs from design to design
 - Board to board?
 - How precise is regulator?
- □ IR-drop in distribution
- Bounce with current spikes

Hot Carrier Injection Negative Bias Temperature Instability (NBTI)

- □ Trap electrons in oxide
 - increases V_{th}

- Negative Bias Temperature Instability
 - Interface traps, Holes
- Long-term negative gate-source voltage
 - Affects PFET most
- \Box Increase V_{th}
- Temperature dependent

[Stott, FPGA2010]

$$\Delta V_t(t) \propto \exp(-\beta V_G) \exp(-\frac{E_a}{\kappa T})t^n$$

[Stott, FPGA2010]

Coping with Variation

□ See a range of parameters

• L:
$$L_{min} - L_{max}$$

•
$$V_{th}: V_{th,min} - V_{th,max}$$

Impact of V_{th} Variation

□ Higher V_{th}

Not drive as strongly

•
$$I_{d,vsat} \propto (V_{gs} - V_{TH})$$

 $I_{DS} \approx v_{sat} C_{OX} W \left(V_{GS} - V_T - \frac{V_{DSAT}}{2} \right)$

- \Box Lower V_{th}
 - Not turn off as well \rightarrow leaks more

$$I_{DS} = I_{S}^{\prime} \left(\frac{W}{L}\right) e^{\left(\frac{V_{GS} - V_{T}}{nkT/q}\right)}$$

- Margin for expected variation
- Must assume V_{th} can be any value in range
 - Speed \rightarrow assume V_{th} slowest value

From: http://en.wikipedia.org/wiki/File:Standard_deviation_diagram.svg

Given

- $V_{th,nom} = 250 \text{mV}$
- Standard deviation: $\sigma = 25 \text{mV}$
- Probability of 100 transistor circuit having all transistors with threshold in range 200mV<V_{th}<300mV
 - When each transistors has 96% prob of being in range?
 - When each has 99.8% probability?

- □ See a range of parameters
 - L: $L_{min} L_{max}$
 - V_{th} : $V_{th,min} V_{th,max}$
- Validate design at extremes
 - Work for both $V_{th,min}$ and $V_{th,max}$?
 - Design for worst-case scenario

- Also margin for
 - Temperature
 - Voltage
 - Aging: end-of-life

- Many effects independent
- Many parameters
- □ With N parameters,
 - Look only at extreme ends (low, high)
 - How many cases?
- □ Try to identify the {worst, best} set of parameters
 - Slow corner of design space, fast corner
- Use corners to bracket behavior

- Many effects independent
- Many parameters
- □ Try to identify the {worst, best} set of parameters
 - E.g. Lump together things that make slow
 - Vtn, Vtp, temperature, Voltage
 - Try to reduce number of unique corners
 - Slow corner of design space
- □ Use corners to bracket behavior

- corners for analog applications
 - For modeling worst-case speed
 - Slow NMOS and slow PMOS(SS) corner
 - For modeling worst-case power
 - Fast NMOS and fast PMOS(FF) corner
- corners for digital applications
 - For modeling worst-case 1
 - Fast NMOS and slow PMOS(FS) corner
 - For modeling worst-case 0
 - Slow NMOS and fast PMOS(SF) corner

Advantages

- Worst case corner models give designers the capability to simulate the pass/fail results of a typical design and are usually pessimistic.
- Disadvantages
 - The fixed-corner method is too wide
 - Some valid designs can not be accepted in worst-case corner model
 - The correlations between the device parameters are ignored

- For more realistic modeling for process variability than worst-case corner model.
 - Using data from different dies, wafers, and wafer lots collected over a long enough period of time to represents realistic process variability of the target technology
- The difference between statistical corner model and worst-case corner-model
 - Statistical corner model use the realistic PDF of the corresponding model parameter of its typical model
 - PDF is obtained from the distribution of a large set of production data
 - Statistical models can pass a valid design, which were rejected in worst-corner model

□ Still get range of performances

□ Any way to exploit the fact some are faster?

- Parameters Approximate
- Differ
 - Chip-to-chip, transistor-to-transistor, over time
- Robust design accommodates
 - Tolerance and Margins
 - Doesn't depend on precise behavior

- □ HW 3 due tonight @midnight
- □ Midterm 1 Friday 10/1 (next week)
 - 7-9pm in Towne 309
 - No Lecture, virtual office hours
 - Virtual review session on Wednesday, will be recorded
 - See Piazza for updates
- □ HW 4 posted Friday 10/1 after midterm
 - Due following Friday 10/8 @midnight