1. What is the variation impact on I_{d} :

- W ?
- L?
- $t_{O X}$?
- $V_{t h}$?

2. Assuming $V_{\text {th,nom }}=250 \mathrm{mV}$ and $\sigma_{V_{t h}}=25 \mathrm{mV}$, there is roughly a 96% probability that a given transistor has a $V_{t h}$ between 200 mV and 300 mV . What is the probability that all transistors in a 100 transistor circuit have a $V_{t h}$ between 200 mV and 300 mV ?

3. Recompute the probability that all 100 transistors are in range when each transistor has a 99.8% probability of being in range.

4. If we need high and low brackets for N parameters, how many cases must we consider?

Resistive:

$$
\begin{equation*}
I_{D}=\mu_{n} C_{O X}\left(\frac{W}{L}\right)\left(\left(V_{G S}-V_{t h}\right) V_{D S}-\frac{\left(V_{D S}\right)^{2}}{2}\right) \tag{1}
\end{equation*}
$$

Saturated (Pinch Off):

$$
\begin{equation*}
I_{D}=\frac{1}{2} \mu_{n} C_{O X}\left(\frac{W}{L}\right)\left(V_{G S}-V_{t h}\right)^{2} \tag{2}
\end{equation*}
$$

Velocity Saturated:

$$
\begin{equation*}
I_{D}=\nu_{s a t} C_{O X} W\left(V_{G S}-V_{t h}-\frac{V_{D S A T}}{2}\right) \tag{3}
\end{equation*}
$$

Subthreshold:

$$
\begin{equation*}
I_{D}=I_{S}\left(\frac{W}{L}\right) e^{\frac{V_{G S}-V_{t h}}{n k T / q}} \tag{4}
\end{equation*}
$$

