	L	1/S
	W	1/S
Ideal scaling:	t_{OX}	1/S
	N_A	S
	V	1/S

1.	What is the sc	ale factor, $1/S$, between a	a 32nm	process	and a	$22\mathrm{nm}$	process?

2. Under ideal scaling, how do the following characteristics scale? (get started on what you can; we will complete together during lecture)

1/S (given)

Note: Dynamic power in CMOS is capacitive charging: $P \propto CV^2 f$ (we will address on future lectures)

3. Assuming V_{dd} =10V in a 10 μ m process and V_{dd} =1V in a 100nm process: (assume everything else scales according to ideal scaling.)

•	What is the voltage scaled by (U)?	
•	What is the feature size scaled by (S)?	
•	How much faster are the gates than ideal scaling?	
•	Assuming you can exploit this gate speedup to increase frequence	ey of operation
	how does power density scale?	