Let:

- $R_{0}$ - equivalent resistance of minimum size $(W=L=1)$ NMOS transistor
- $I_{0}$ - equivalent current of minimum size $(W=L=1)$ NMOS transistor
- $C_{0}$ - gate capacitance of minimum size transistor
- $\tau=R_{0} C_{0}$ - technology-specific delay unit (maybe more accurate today $\tau=C_{0} / I_{0}$ )

1. What are $I_{d s}, \mathrm{R}$, and C in terms of $I_{0}, R_{0}$, and $C_{0}$ for a transistor with width $W$ :

| $R_{\text {drive }}$ |  |
| :---: | :--- |
| $I_{\text {drive }}$ |  |
| $C_{\text {gate }}$ |  |

2. How size for equal rise/fall times assuming $\mu_{n}=500 \mathrm{~cm}^{2} /(V \cdot s)$ and $\mu_{p}=200 \mathrm{~cm}^{2} /(V \cdot s)$, velocity saturated, and $\left|V_{T_{p}}\right|=\left|V_{T_{n}}\right|$ and targeting $R_{\text {drive }}=\frac{R_{0}}{2}$.

3. What is the delay in $\tau$ units?

4. How should we size the transistors in middle stage?

|  | $W_{p}$ | $W_{n}$ | Delay in $\tau$ |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |

5. What is the delay in $\tau$ units?

6. Identify charges and capacitances:

(a) What is charge, Q, on each of the capacitors when Vin=Vdd and Vin=Gnd? Pay carefull attention to polarities. ( $\mathrm{Qab}=-\mathrm{Qba}$ )

|  | PMOS |  | NMOS |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vin | Cgd | Cgb | Cgs | Cgd | Cgb | Cgs |
| Vdd |  |  |  |  |  |  |
| Gnd |  |  |  |  |  |  |

(b) What is the total $\Delta \mathrm{Q}$ on each $C_{g d}$ when Vin switches from Vdd to Gnd? (and vice versa)

(c) Assuming $\Delta \mathrm{V}=V_{d d}$, what is the equivalent capacitance switched?

