Let:

- R_0 equivalent resistance of minimum size (W=L=1) NMOS transistor
- I_0 equivalent current of minimum size (W=L=1) NMOS transistor
- \bullet C_0 gate capacitance of minimum size transistor
- $\tau = R_0 C_0$ technology-specific delay unit (maybe more accurate today $\tau = C_0/I_0$)
- 1. What are I_{ds} , R, and C in terms of I_0 , R_0 , and C_0 for a transistor with width W:

R_{drive}	
I_{drive}	
C_{gate}	

2. How size for equal rise/fall times assuming μ_n =500 cm²/($V \cdot s$) and μ_p =200 cm²/($V \cdot s$), velocity saturated, and $|V_{T_p}| = |V_{T_n}|$ and targeting $R_{drive} = \frac{R_0}{2}$.

W_p	W_n	C_{in} in multiples of C_0

3. What is the delay in τ units?

5. What is the delay in τ units?

6. Identify charges and capacitances:

(a) What is charge, Q, on each of the capacitors when Vin=Vdd and Vin=Gnd? Pay carefull attention to polarities. (Qab = - Qba)

	PMOS			NMOS		
Vin	Cgd	Cgb	Cgs	Cgd	Cgb	Cgs
Vdd						
Gnd						

(b) What is the total Δ Q on each C_{gd} when Vin switches from Vdd to Gnd? (and vice versa)

(c) Assuming $\Delta V = V_{dd}$, what is the equivalent capacitance switched?