Reminder:

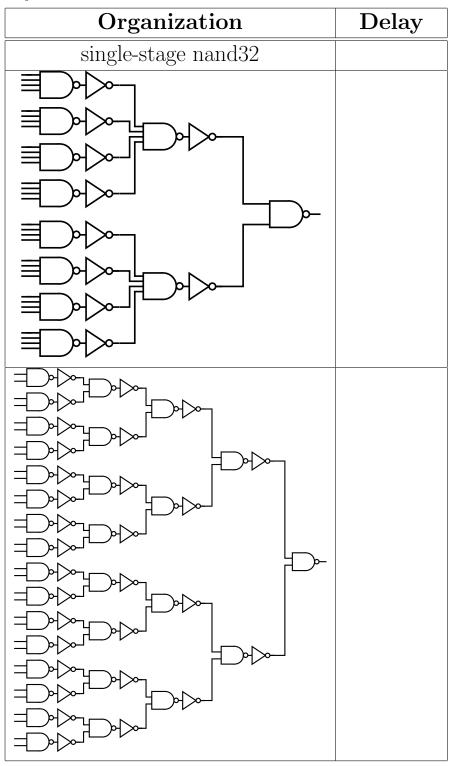
- R_0 equivalent resistance of minimum size (W = L = 1) NMOS transistor
- I_0 equivalent I_{ds} current of minimum size (W = L = 1) NMOS transistor
- C_0 gate capacitance of minimum size transistor
- $\tau = R_0 C_0$ or maybe C_0/I_0 technology dependent delay term

R, I, and C in terms of R_0 , I_0 , and C_0 for a transistor with width W:

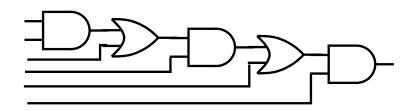
R_{drive}	$\frac{R_0}{W}$
I_{drive}	I_0W
C_{gate}	$W \cdot C_0$

We will evaluate two cases today.

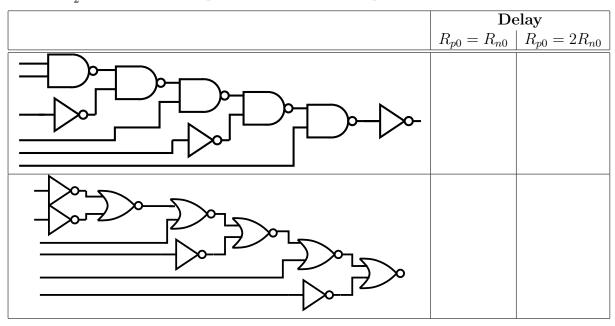
- 1. Extreme velocity saturation where $R_{p0} = R_{n0}$ (i.e. I_{ds} at rails is same for equally sized N and P devices—simplifying assumption we made for examples from last class)
- 2. $R_{p0} = 2R_{n0}$ (i.e. I_{ds} PMOS at rails is half I_{ds} of NMOS)


for the two cases above: <i>C_a</i> is the capacita	$\begin{array}{c} R_{p0} = R_{n0} \\ W_p \mid W_n \mid C_a \end{array}$			$R_{p0} = 2R_{n0}$		
	W_p	W_n	C_a	W_p	W_n	C_a
	2	2	$4C_0$	4	2	$6C_{0}$
A C T						

1. How can you size for equal, worst-case rise/fall times assuming targeting $R_{drive} = \frac{R_0}{2}$ for the two cases above? C_a is the capacitance of the A input.


2. For a k-input NAND gate, sized for equal, worst-case rise/fall times and targeting $R_{drive} = \frac{R_0}{2}$:

$$R_{p0} = R_{n0} \quad R_{p0} = 2R_{n0}$$
What is C_{in} as a function of k ?


3. Assuming sized for $\frac{R_0}{2}$ drive as above, and input also driven by $R_{drive} = \frac{R_0}{2}$, compare the delay of the following three nand32 implementations for the $R_{p0} = R_{n0}$ case. Include the delay of driving the input and assume each implementation has an output load of $4C_0$.

4. What is the delay for each of the two implementations below for this logical computation:

Assume $R_{drive} = \frac{R_0}{2}$ sizing of gates from previous page, and input also driven by $R_{drive} = \frac{R_0}{2}$. Assume each implementation has an output load of $2C_0$.

