ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems

Lec 20: October 25, 2021 Pass Transistor Logic, Pt2

- Pass Transistor Circuit
 - $C_{diff} > 0$
 - Output levels
 - Cascading
 - Series pass transistors?
 - Delay
- □ Start on Distributed RC
 - Analyzing delay for pass-tr designs

- \square R₀ = Resistance of minimum size NMOS device
- C₀ = gate capacitance of minimum size NMOS device
- C_{diff0} = diffusion capacitance on minimum size
 NMOS
- $C_{diff0} = \gamma C_0$ • $R_{drive} = R_0 / W$ • $C_g = W C_0$ • $C_{diff} = W C_{diff0}$

Delay A=1, B=0,
$$C_{diff0} = \gamma C_0$$
? (Preclass 1)

□ What's the equivalent RC circuit?

Delay A=1, B=0, $C_{diff0} = \gamma C_0$? (Preclass 1)

□ What's the equivalent RC circuit?

Delay A=1, B=1,
$$C_{diff0} = \gamma C_0$$
? (Preclass 1)

Delay A=1, B=1,
$$C_{diff0} = \gamma C_0$$
? (Preclass 1)

□ What's the equivalent RC circuit?

□ What does this do?

Α	В	Y
0	0	
0	1	
1	0	
1	1	

□ What does this do?

More examples in the text

Y

0

0

0

1

Cascading Pass Transistors

□ What if we did this?

• Extract key path

□ What is voltage at output?

DC Analysis – chain of 3 vs length of 3

 Can chain any number of pass transistors and only drop a single V_{th}

*** spice deck for cell demo_inv_passtr6{sch} from library test

Transient Response for pass tr cascade

Transient Response for pass tr cascade

□ What is output capacitance per stage?

• I.e. What is the capacitance at output y?

□ What does RC circuit look like?

□ What are the voltages?

 $V_{dd}=1V$ $V_{thn}=-V_{thp}=0.3V$

• Cannot cascade degraded inputs into gates.

Distributed RC (setup)

What is response? (Preclass 4)

What is response? (Preclass 4)

Step Response

Step Response

Look at series of R's on path

• Must move $Q=V(\Sigma C)$ across each R

- The delay from source s to node 5
 - N = number of nodes in circuit

- The delay from source s to node 5
 - N = number of nodes in circuit

- The delay from source s to node 5
 - N = number of nodes in circuit

$$R_{5k} = \sum R_j \Rightarrow (R_j \in [path(s \to 5) \cap path(s \to k)])$$

- The delay from source s to node 5
 - N = number of nodes in circuit

$$R_{5k} = \sum R_j \Rightarrow (R_j \in [path(s \to 5) \cap path(s \to k)])$$

k=4

- The delay from source s to node 5
 - N = number of nodes in circuit

$$R_{5k} = \sum R_j \Rightarrow (R_j \in [path(s \to 5) \cap path(s \to k)])$$

1

0

$$\tau_{D5} = \sum_{k=1}^{N} C_k R_{5k}$$

k=4

 C_2

 C_4

5

 C_5

 R_{2}

 R_3

 C_3

- The delay from source s to node 5
 - N = number of nodes in circuit

$$R_{5k} = \sum R_j \Rightarrow (R_j \in [path(s \to 5) \cap path(s \to k)])$$

$$\tau_{D5} = \sum_{k=1}^{N} C_k R_{5k}$$

$$R_{54} = R_1 + R_3$$

k=4

- The delay from source s to node 5
 - N = number of nodes in circuit

- The delay from source s to node 5
 - N = number of nodes in circuit

$$R_{5k} = \sum R_j \Rightarrow (R_j \in [path(s \to 5) \cap path(s \to k)])$$

 \square The delay from source *s* to node *O*

• N = number of nodes in circuit

- □ There are other circuit disciplines
- Can use pass transistors for logic
 - Even chains of pass transistors
 - Mostly gives area win, sometimes gives delay win
 - Will talk more about delay on Monday
- Do not cascade as easily as CMOS
- Additional diffusion capacitance leads to distributed RC networks
 - More next lecture

- CMOS Gates
 - Dual pull-down and pull-up networks, only one enabled at a time
 - Performance of gate is strong function of the fanin of gate
 - Techniques to improve performance include sizing, input reordering, and buffering (staging)
- Ratioed Gates
 - Have active pull-down (-up) network connected to load device
 - Reduced gate complexity at expense of static power asymmetric transfer function
 - Techniques to improve performance include sizing to improve noise margins and reduce static power
- Pass Gates
 - Implement logic gate as switch network for reduced area and load capacitance
 - Long cascades of switches result in quadratic increase in delay
 - Also suffer from reduced noise margins (V_T drop)
 - Use level-restoring buffers to improve noise margins

Penn ESE 370 Fall 2021 – Khanna

Dynamic logic ... coming up soon

- Project 1
 - Milestones were mostly all good
 - Show me the results! Justify all metrics
 - Use Piazza and office hours
 - Should be working hard on project
 - Not enough to know what to do. You have to actually do it.
 - Rewarding experience and worth the time once you get it
 - Design and test takes time