ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems

Lec 22: October 29, 2021 CMOS Worst Case Analysis and Logic Type Comparisons

Penn ESE 370 Fall 2021 - Khanna

- Pass transistor Round-up
- CMOS Gates Review
 - CMOS Worst Case Analysis
- Logic Type Comparisons

- \square R₀ = Resistance of minimum size NMOS device
- \Box I₀ = I_{ds} of minimum size NMOS device
- C₀ = gate capacitance of minimum size NMOS device
- C_{diff0} = diffusion capacitance of minimum size
 NMOS device

•
$$C_{diff0} = \gamma C_0$$

Penn ESE 370 Fall 2021 - Khanna

Previously: First Order Delay

- □ For device of width W (multiple of minimum size)
- $\square R_{\rm ON} = R_0 / W$
- $\Box I_D = W^*I_0$
- $\Box C_{\rm G} = W^* C_0$
- $\Box C_{diff} = W^*C_{diff0}$
 - $C_{diff} = W*\gamma C_0$

$\Box \text{ Circuit } \rightarrow \text{ Delay?}$

3 stages

Delay as a function of number of stages, k?

□ Delay with Cdiff>0?

Review: Two-Input NOR Gate (NOR2)

□ Worst case delay of NOR2?

Minimum size, Loaded with itself

3 VTC Cases $V_1 = 0 V; V_2 = 0 \rightarrow V_{DD}$ $V_1 = 0 \rightarrow V_{DD}; V_2 = 0$ $V_1 \text{ and } V_2 = 0 \rightarrow V_{DD}$ simultaneously

Switching Threshold Voltage: $V_1 = V_2 = V_{out} = V_t$

□ Worst case delay for Pull-up?

□ Worst case delay for Pull-up?

Worst Case for Pull-up \rightarrow V₁ = 0, V₂ = V_{DD}-> 0 @t=0 & V_x \approx V_{out} = 0 -> V_{DD}

delay = $(5\gamma C_0 + 2C_0)(2R_0)=(10\gamma+4)\tau$ Penn ESE 370 Fall 2021 - Khanna

delay = $(2C_{diff})(R_{p2})+(3C_{diff}+C_{load})(R_{p1}+R_{p2})=(8\gamma+4)\tau$

Penn ESE 370 Fall 2021 - Khanna

□ Worst case delay Pull-down?

□ Worst case delay Pull-down?

Worst case for Pull-down \rightarrow V₁ = 0, V₂ = 0 ->V_{DD} @t=0 & V_x \approx V_{out}=V_{DD}->0

□ Worst case delay Pull-down?

Worst case for Pull-down \rightarrow V₁ = 0, V₂ = 0 ->V_{DD} @t=0 & V_x \approx V_{out}=V_{DD}->0

delay = $(2C_{diff})(R_{p1}+R_{n2})+(3C_{diff}+C_{load})(R_{n2})=(7\gamma+2)\tau$

Penn ESE 370 Fall 2021 - Khanna

Worst case for Pull-up \rightarrow

Worst case for Pull-up \rightarrow V₁ = V_{DD}, V₂ = V_{DD}-> 0 @t=0 & V_x \approx V_{out}= 0 ->V_{DD}

Worst case for pull down \rightarrow

Worst case for pull down \rightarrow V₁ =V_{DD}, V₂ = 0 ->V_{DD} @t=0 & V_x \approx V_{out}=V_{DD}->0

□ Delay with Cdiff>0?

- CMOS Gates
 - Dual pull-down and pull-up networks, only one enabled at a time
 - Performance of gate is strong function of the fanin of gate
 - Techniques to improve performance include sizing, input reordering, and buffering (staging)
- Ratioed Gates
 - Have active pull-down (-up) network connected to load device
 - Reduced gate complexity at expense of static power asymmetric transfer function
 - Techniques to improve performance include sizing to improve noise margins and reduce static power
- Pass Gates
 - Implement logic gate as switch network for area and often delay win
 - Long cascades of switches result in quadratic increase in delay
 - Also suffer from reduced noise margins $(V_T drop)$
 - Use level-restoring buffers to improve noise margins
- Dynamic logic ... next time

Penn ESE 370 Fall 2021 – Khanna

CMOS Logic

- Complimentary dual pull-up/down networks
- □ There are other logic disciplines
 - We have the tools to analyze
- Ratioed Logic
 - Tradeoff noise margin for
 - Reduced area? Capacitive load?
 - Dissipates static power in one mode
- Can use pass transistors for logic
 - Sometimes gives area or delay win

- Project 2 due tonight @ midnight
 - Leave time to write the report!
- □ Wednesday 11/3 Midterm 2 (next week)
 - 7-9pm DRLB 3C2
 - Lectures 1-22
 - Closed note, calculator allowed
 - All old exams online
 - focus on 2015-2019 \leftarrow taught in person by me
 - Study them!
 - Felicity review session
 - Monday 11/1, keep eye on Piazza

Admin: Midterm 2 Topics (up to Lec 22)

- Sizing
- **T**au-model
 - Estimation and optimization
- Elmore-delay
 - Estimation and optimization
- Energy and power
 - Estimation and optimization
 - Dynamic and static

Logic

- CMOS
- Ratioed
- Pass transistor
- Transistor
 - Regions of operation
 - Parasitic Capacitance Model

