ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems

Lec 25: November 8, 2021 Dynamic Logic Pt. 1

Dynamic (Clocked) Logic

- Strategy
- Form
- Compare CMOS

Latch Timing Issues

 $T \geq t_{c\text{-}q} + t_{p\log ic} + t_{su}$

 $t_{cdregister} + t_{cdlogic} \ge t_{hold}$

 $t_{cdregister} + t_{cdlogic} \ge t_{hold}$

 $t_{cdregister} + t_{cdlogic} \ge t_{hold}$

Register Implementation (Preclass 2)

Timing Properties (Preclass 2)

- Assume propagation delays are t_{pd_inv} and t_{pd_tx}, and that the inverter delay to drive !clk is 0
- Set-up time? time before rising edge of clk that D must be valid
- Propagation delay? time from $clk \rightarrow Q$
- Hold time? time D must be stable after rising edge of clk
- Come to office hours or post on Piazza for discussions/solutions

- Breaking logic up with registers allows circuit to run at high frequency
 - Inputs decoupled from outputs
- Clock discipline simplifies logic composition
 - Abstracts many internal timing details
 - Just concerned with making clock period long enough
- Design Discipline keeping data stable around clock edge
 - Setup, hold time determined by latch circuit
 - Worst case and minimum $Clk \rightarrow Q$ delay for latch

- Circuits typically operate in a clocked environment
 - Synchronous circuits
- Gives some additional structure we can exploit → dynamic logic

Dynamic Logic

- We would like to avoid driving both pullup/pulldown networks
 - reduce capacitive load
 - Power, delay

- We would like to avoid driving both pullup/pulldown networks
 - reduce capacitive load
 - Power, delay
- Ratioed Logic

- We would like to avoid driving bot pullup/pulldown networks
 - reduce capacitive load
 - Power, delay
- **Ratioed Logic cons:**
 - Large devices for ratioing
 - Meeting noise margins
 - Slow pullup
 - Static power

Use clock to disable pullup network during logic
evaluation

- Use clock to disable pullup network during logic evaluation
- Define two phases
 - Pre-charge
 - Output pre-charged
 - Evaluation
 - Pulldown network evaluates gate logic

- Use CLK to disable pullup during evaluation
- What is Vout when:
 - /Pre=0, A=B=0?
 - /Pre=0 \rightarrow 1, A=B=0?
 - /Pre=1, A=0, B=0→1 ?

- Use CLK to disable pullup during evaluation
- What is Vout when:
 - /Pre=0, A=B=0?
 - /Pre=0 \rightarrow 1, A=B=0?
 - /Pre=1, A=0, B=0 \rightarrow 1?
- □ Sizing implication?
- □ Concerns?
- Requirements?

- Large load device
 - Driven by CLK—not data
 - Can pullup quickly without putting load on logic
- Single pulldown network
 - Don't have to size for ratio with pullup
 - Swings rail-to-rail

precharge evaluate (all outputs selectively switch $1 \rightarrow 0$)

- □ Single transition
 - Once transitioned, it is done \rightarrow like domino falling
- □ All inputs at 0 during precharge
 - "Outputs" pre-charged to 1 then inverted to 0
- Non-inverting gates fundamental gate

Cascaded Domino CMOS Logic Gates

Cascaded Domino CMOS Logic Gates

Cascaded Domino CMOS Logic Gates

- Performance
 - $R_0/2$ input
- □ Compare to CMOS cases?
 - nor4
 - or4
 - nand4

- □ Precharge time?
- Driving input
 - With R₀/2 inverter
- Driving inverter?
- □ Self output Delay?

- **D**riving input
 - With R₀/2 inverter
- □ Self output Delay?

- **D**riving input
 - With $R_0/2$
- Driving self cap?

- Noise sensitive
 - During evaluation phase, when output is high it's floating and therefore more susceptible to noise
- Power
 - Eliminates static current
 - Higher activity factor—always a 0→1 transition, large pre-charge device dissipates extra switching power

- Better (lower) ratio of input capacitance to drive strength
- Particularly good for
 - Driving large loads
 - Large fanin gates
- Harder to design with
 - Timing and polarity restrictions
 - Avoiding noise
 - Especially with today's high variation tech
- □ Can consume more energy

- Clock discipline simplifies logic composition
 - Breaking logic up with registers allows circuit to run at high frequency
 - Abstracts many internal timing details
 - Setup/Hold time, $clk \rightarrow q$ delay
 - Just concerned with making clock period long enough
- Dynamic/clocked logic
 - Only build/drive one pulldown network
 - Domino Logic
 - Fast transition propagation
 - Spend delay (capacitance) on pullup of critical path of logic
 - More complicated design, power dissipation
 - Reserve for when most needed

- □ Homework 6
 - Due Friday 11/12