

1. Timing Constraints:

$$T \ge t_{c-q} + t_{plogic} + t_{su} \tag{1}$$

$$t_{cdregister} + t_{cdlogic} \ge t_{hold} \tag{2}$$

(a) What is the minimum clock period, T, that ensures correct operation?

(b) Add inverter pairs to the design above such that there are no hold time variations.

2. Below is a register built with two latches built from transmission gate muxes cascaded together controlled by non-overlapping clocks.

(a) Is this a positive or negative edge-triggered register?

Assume propagation delays are $t_{pd,inv}$ and $t_{pd,tx}$ and the inverter delay to drive \overline{clk} is 0.

- (b) What is the setup time for the register?
- (c) What is the CLK \rightarrow Q propagation delay?
- (d) What is the hold time?

Assume: velocity saturated, $R_0/2$ sizing for gate drive; inverter sizing is: $W_n = W_p = 2$

3. Consider:

- (e) What concerns might we have with this logic?
- (f) What requirements must we satisfy for correct operation?

4. Determine delays (express in τ units in terms of γ):