ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems

Lec 3: September 10, 2021

Transistor Introduction (first order)

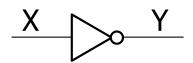
Today

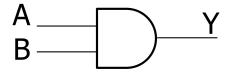
- Basic Digital Gates
- Boolean Logic
 - Basic Algebra
 - DeMorgan's Law
 - Minimum Sum of Products/K-maps
- Cascading Gates
- Transistor first order model
 - For performance estimates (i.e propagation delay!)
 - There are always Rs and Cs!

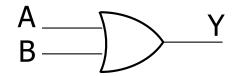
Basic Digital Gates

$$\begin{array}{c} NOT \\ Y = \overline{X} \end{array}$$

$$OR$$
 $Y = A+B$





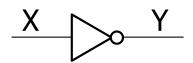


Α	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

Basic Digital Gates

$$\begin{array}{l}
\mathsf{NOT} \\
\mathsf{Y} = \overline{\mathsf{X}}
\end{array}$$

$$OR$$
 $Y = A+B$



X	Y
0	1
1	0

A	В	Y	Z
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

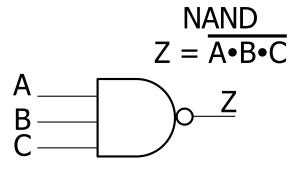
A B

 $Z = \overline{A \cdot B}$

NOR

 $Z = \overline{A+B}$

Basic Digital Gates



A	В	С	Z
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

Boolean Algebra

☐ TABLE 2-3

Basic Identities of Boolean Algebra

1.
$$X + 0 = X$$

$$X + 1 = 1$$

$$5. \quad X + X = X$$

7.
$$X + \overline{X} = 1$$

9.
$$\overline{\overline{X}} = X$$

$$10. \quad X + Y = Y + X$$

12.
$$X + (Y + Z) = (X + Y) + Z$$

$$14. \quad X(Y+Z) = XY + XZ$$

16.
$$\overline{X} + \overline{Y} = \overline{X} \cdot \overline{Y}$$

$$2. X \cdot 1 = X$$

$$4. \quad X \cdot 0 = 0$$

$$6. X \cdot X = X$$

$$8. X \cdot \overline{X} = 0$$

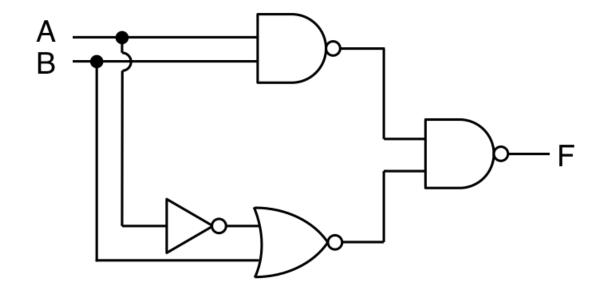
11.
$$XY = YX$$

13.
$$X(YZ) = (XY)Z$$

15.
$$X + YZ = (X + Y)(X + Z)$$

17.
$$\overline{X} \cdot \overline{Y} = \overline{X} + \overline{Y}$$

Combination



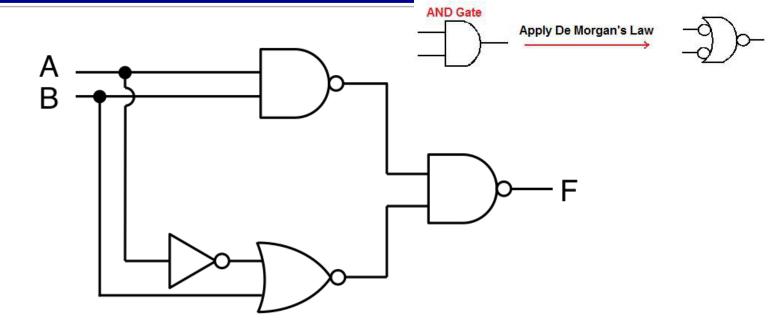
- Sum-of-products form (SOP)
 - Eg. ABC+DEF+GHI
- Product-of-sums form (POS)
 - Eg. (A+B+C)(D+E+F)(G+H+I)
- Convert between the two with Boolean algebra
 - DeMorgan's Law

$$A + B = A \cdot B$$

$$= = A \cdot B$$

$$A \cdot B = A + B$$

Combination



Canonical Form

□ Every minterm in your expression has every variable

Row Number	Α	В	C	f
0	0	0	0	0
1	0	0	1	0
2	0	1	0	0
3	0	1	1	1
4	1	0	0	0
5	1	0	1	0
6	1	1	0	1
7	1	1	1	1

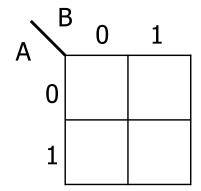
Canonical Form

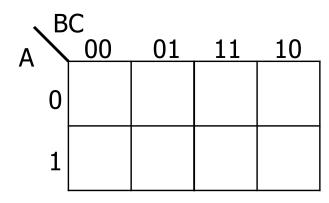
□ Every minterm in your expression has every variable

Row Number	Α	В	C	f
0	0	0	0	0
1	0	0	1	0
2	0	1	0	0
3	0	1	1	1,
4	1	0	0	0
5	1	0	1	0
6	1	1	0	/1
7	1	1	1	1
	-			/
$f(A,B,C) = ABC + AB\overline{C} + \overline{ABC}$				

What is a K(arnaugh)-map?

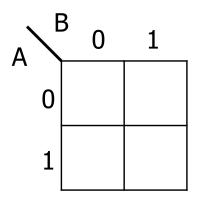
- □ A grid of squares (representing truth table)
- Each square represents one minterm
- □ The minterms are ordered according to Gray code
 - Only one variable changes between adjacent squares
- Squares on edges are considered adjacent to squares on opposite edges
 - I.e Table wraps around
- □ K-maps are clumsy with more than 4 variables





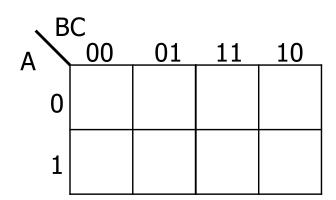
K-map Examples (Preclass 1)

□ 2-variable



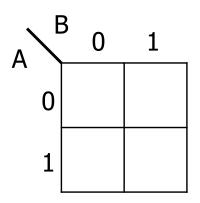
Eg:
$$Z = A'B' + AB' + A'B$$

□ 3-variable



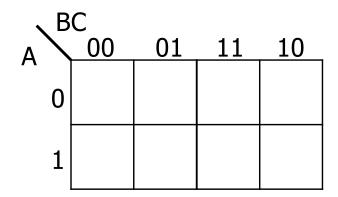
K-map Examples (Preclass 2)

□ 2-variable



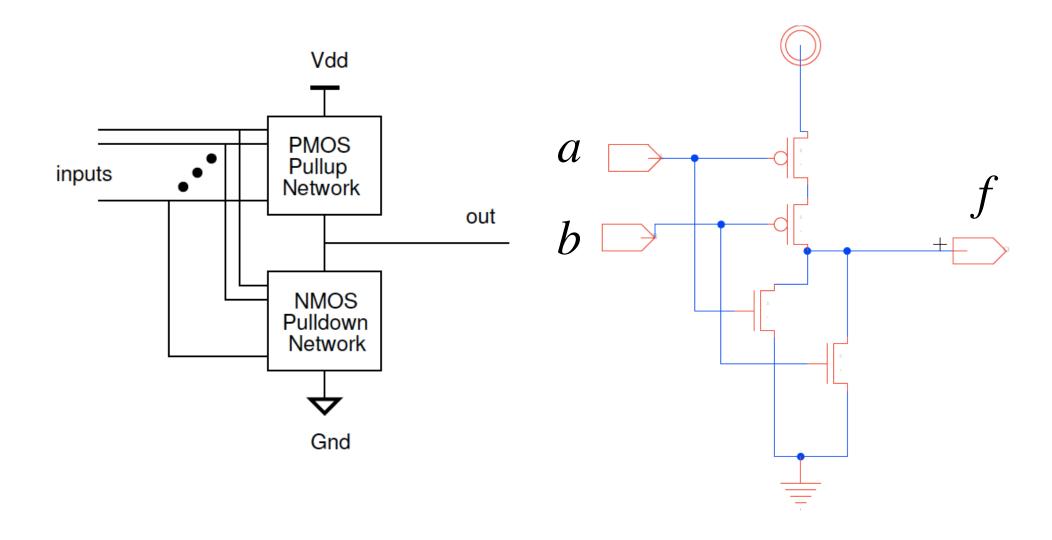
Eg:
$$Z = A'B' + AB' + A'B$$

□ 3-variable



Eg:
$$Z = A'B'C' + A'B + ABC' + AC$$

Static CMOS Gate Structure



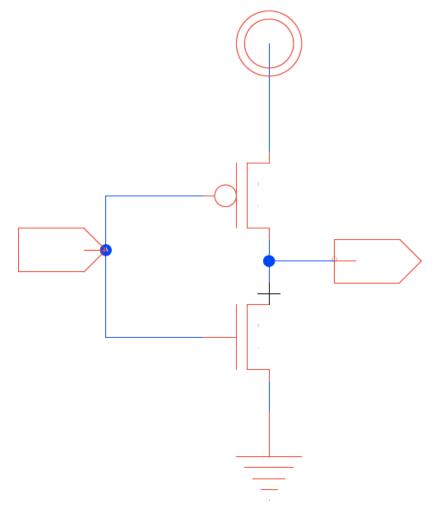
Gate Design Example

Design gate to perform: $f = (a + b) \cdot c$

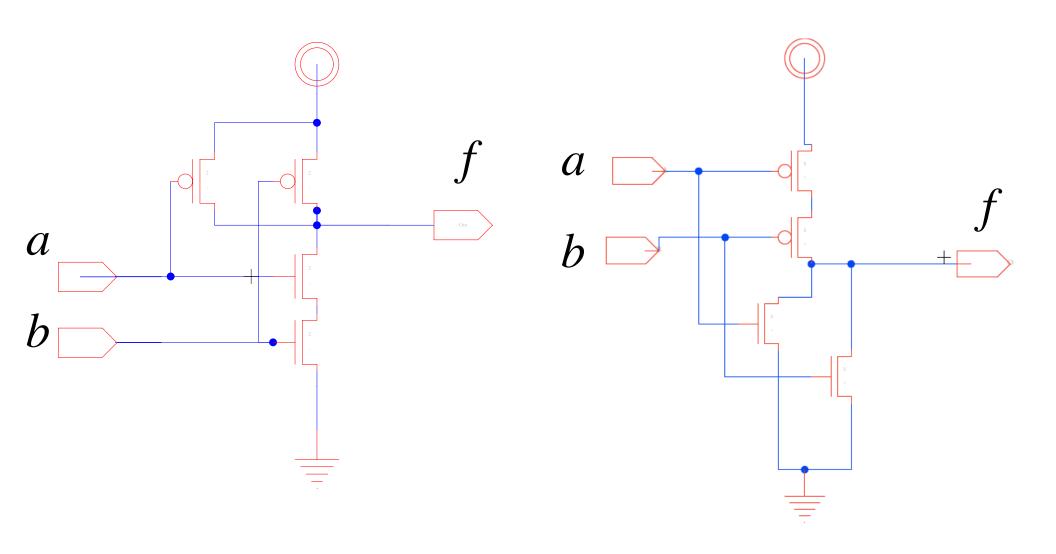


Inverting Stage

■ Each stage of Static CMOS gate is inherently inverting

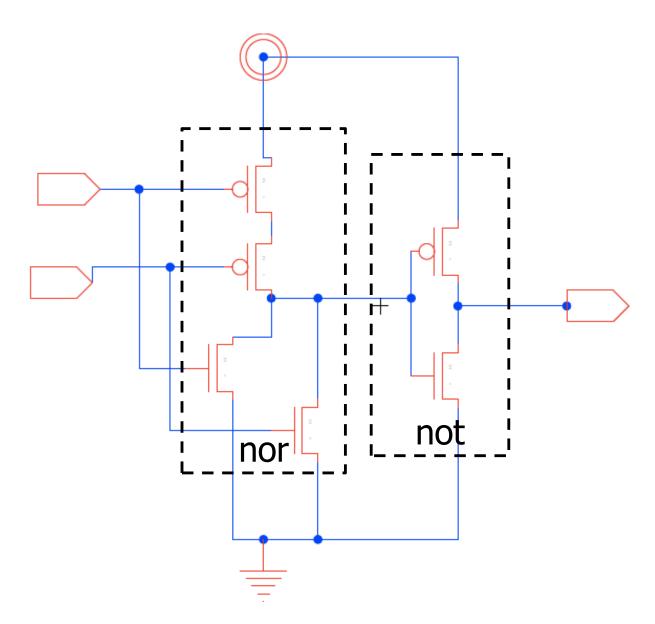


NAND/NOR Fundamental Gates



How implement OR?

How implement OR?



Cascading Stages

- Can always cascade "stages" to build more complex gates
- Could simply build nor2 or nand2 at circuit level and assemble arbitrary logic by combining – universality
 - but may not be smallest/fastest/least power

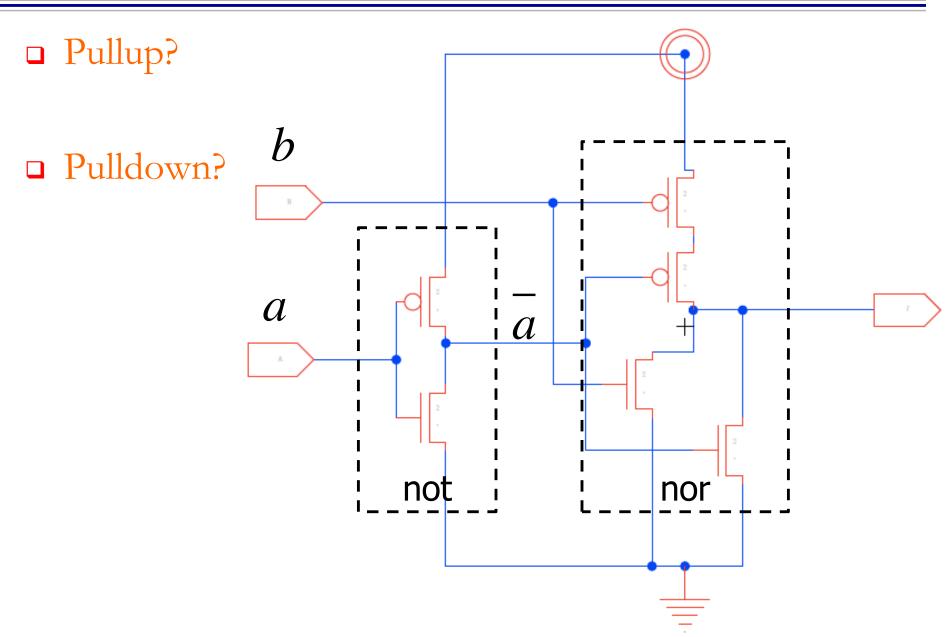
Implement: $f = a \cdot b$

□ Pullup?

□ Pulldown?

Hint: use cascading stages

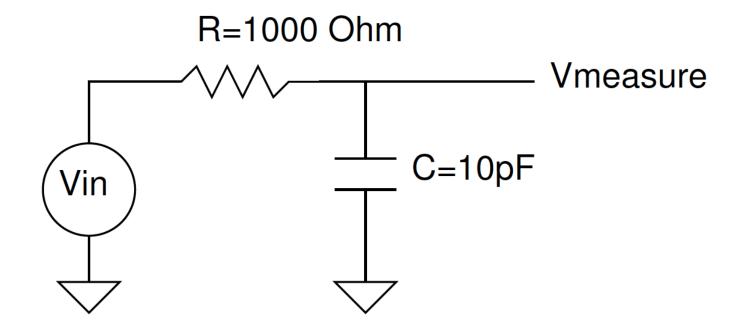
Implement: $f = a \cdot \overline{b}$



Final Voltage? (Preclass 4)

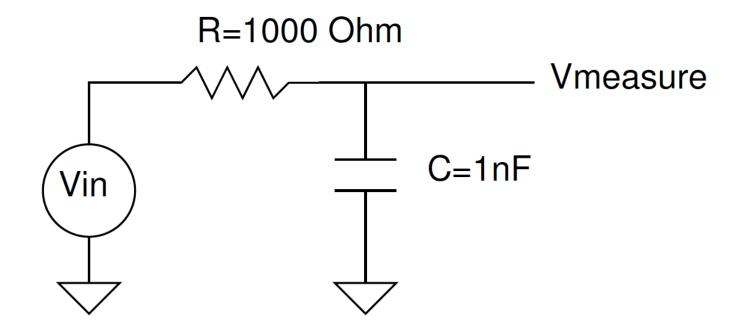
Assume V_{in} is 0 for t < 0 and steps to 1V at t = 0.

What value does $V_{measure}$ take on as $t \to \infty$?

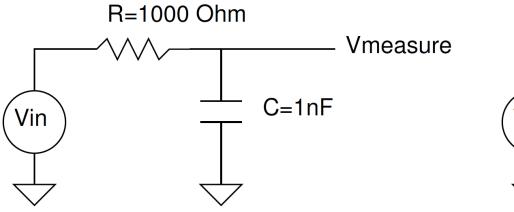


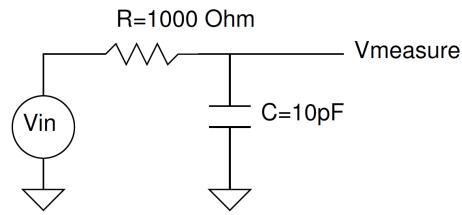
Assume V_{in} is 0 for t < 0 and steps to 1V at t = 0.

What value does $V_{measure}$ take on as $t \to \infty$?



□ Bonus question: Which one will settle faster?



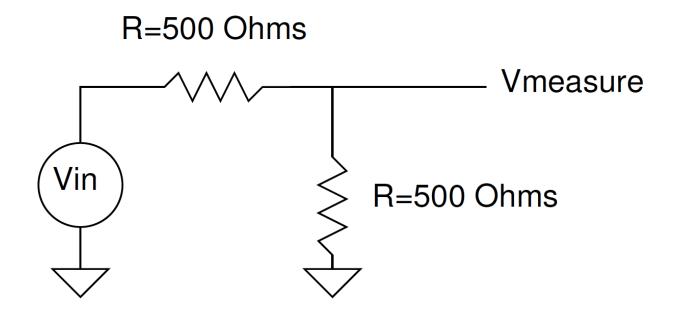


A

В

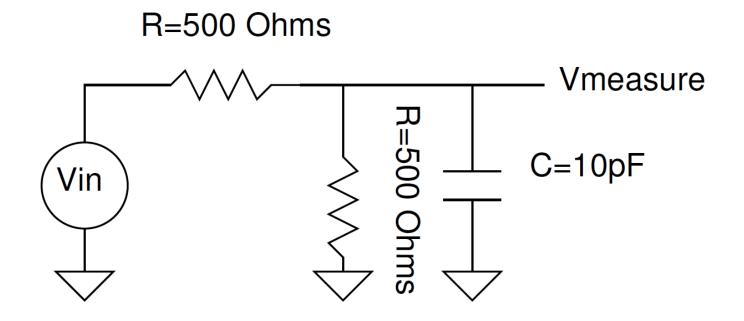
Assume V_{in} is 0 for t < 0 and steps to 1V at t = 0.

What value does $V_{measure}$ take on as $t \to \infty$?



Assume V_{in} is 0 for t < 0 and steps to 1V at t = 0.

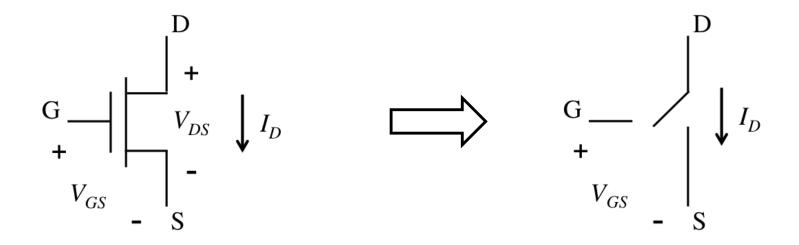
What value does $V_{measure}$ take on as $t \to \infty$?



Conclude?

- DC/Steady-State
 - Ignore the capacitors
 - Look like "open circuit"

MOSFET – Zeroeth Order Model

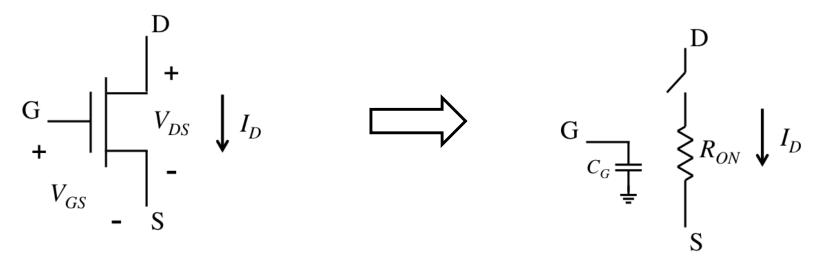


Ideal Switch

 $V_{GS} > V_{th} \rightarrow$ switch is closed, conducts $V_{GS} < V_{th} \rightarrow$ switch is open, does not conduct

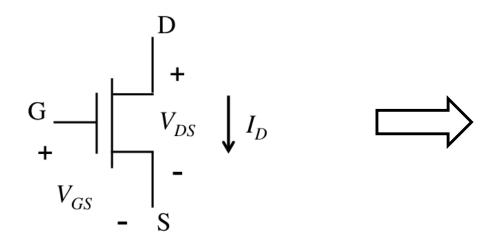
- □ Gate draws no current from input
 - Loads input capacitively (gate capacitance)

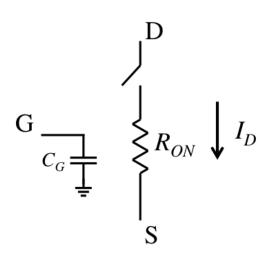
First Order Model



- Switch
 - Loads gate input capacitively
 - C_g
 - Has finite drive strength
 - R_{on}

First Order Model

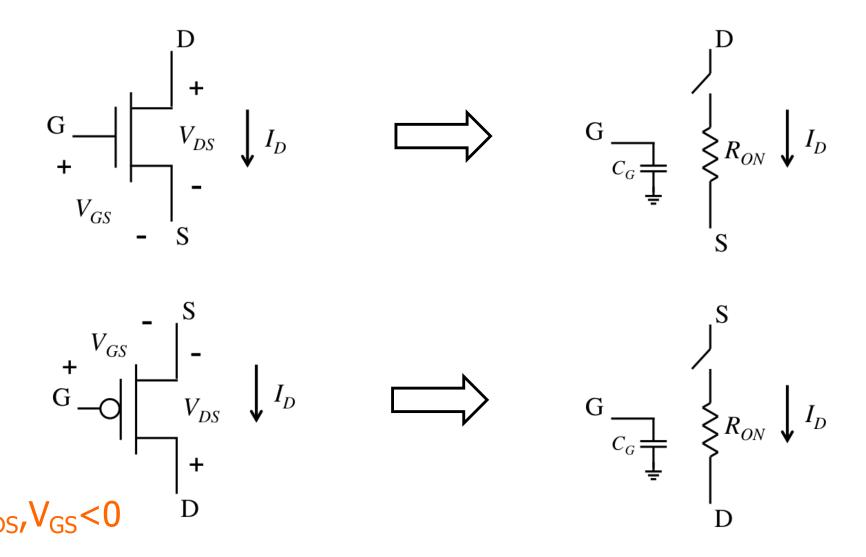




- Switch
 - Loads gate input capacitively
 - C_g
 - Has finite drive strength
 - R_{on}

What do drive and load mean?

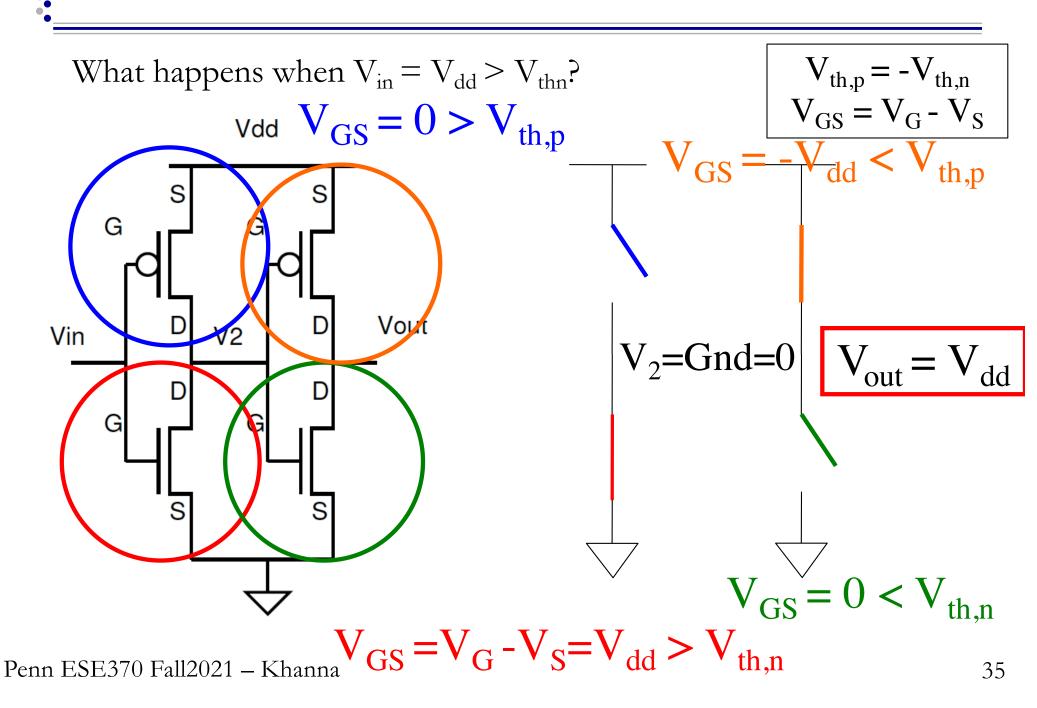
First Order Model - PMOS



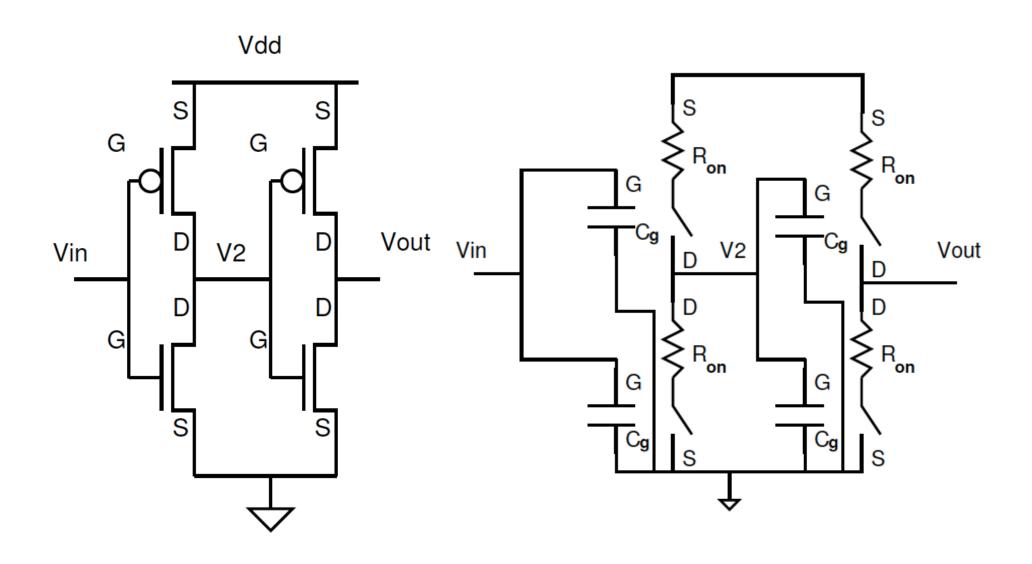
CMOS Buffer Gate

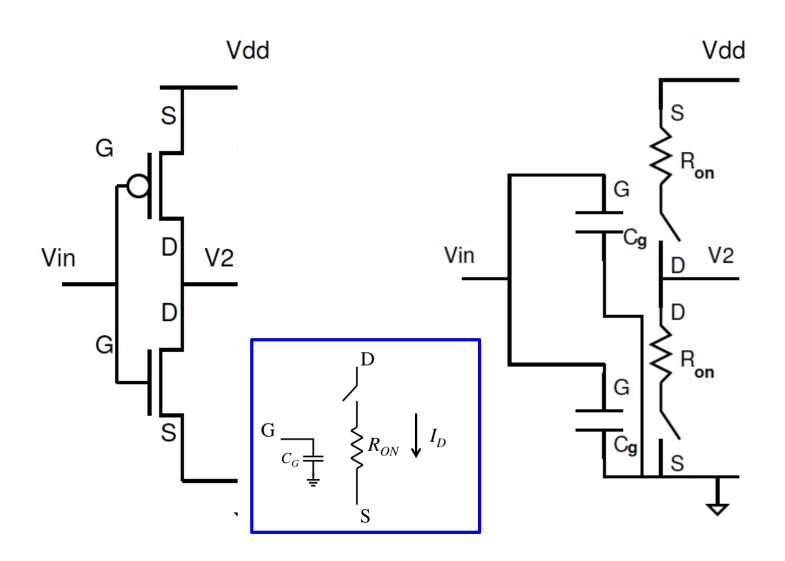
Stage 1 Stage 2 Vdd G G Vout Vin

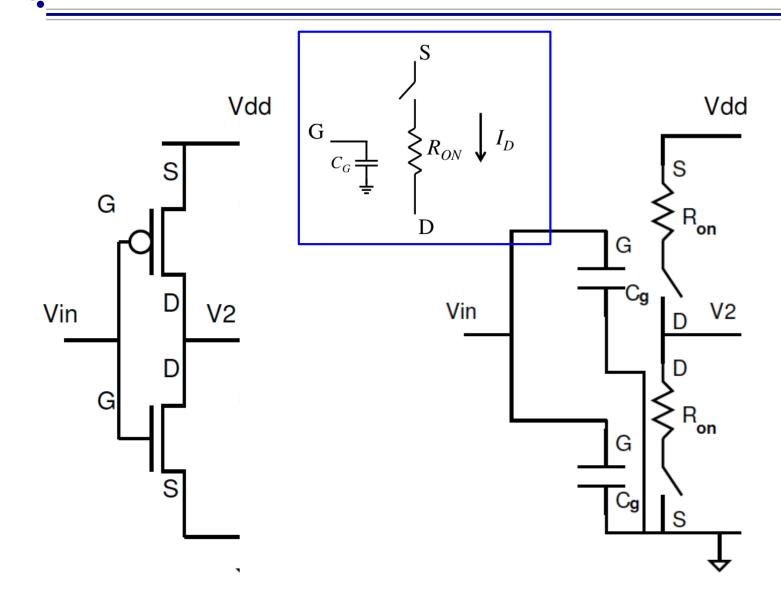
Reminder: Zero-Order Model?

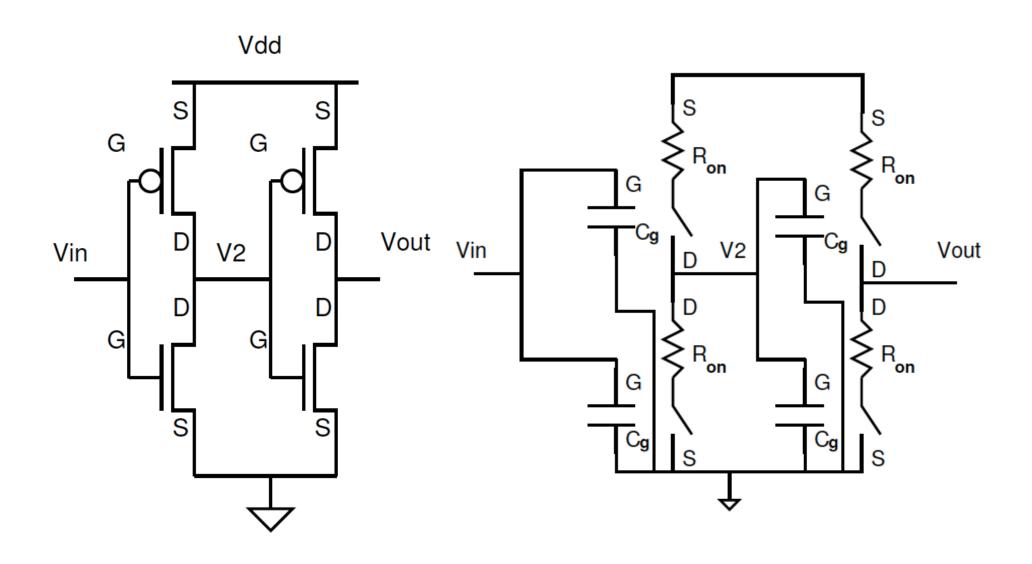


CMOS Buffer Gate - First Order

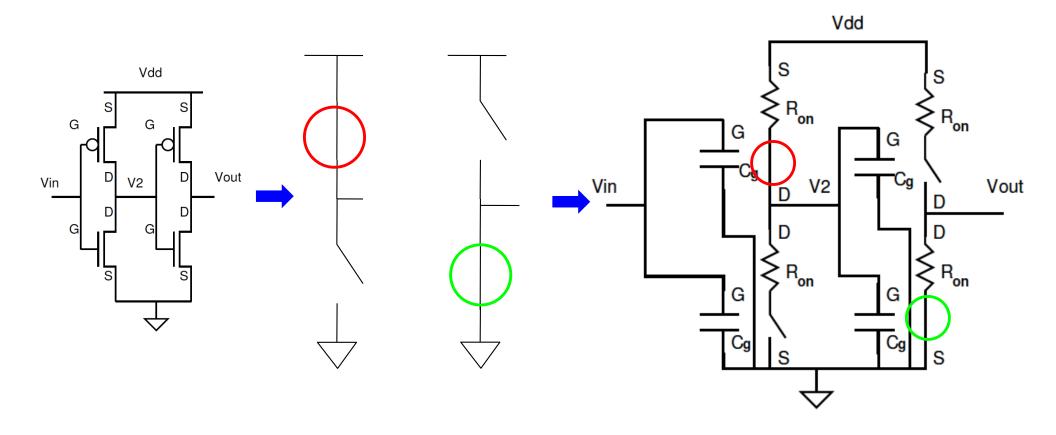




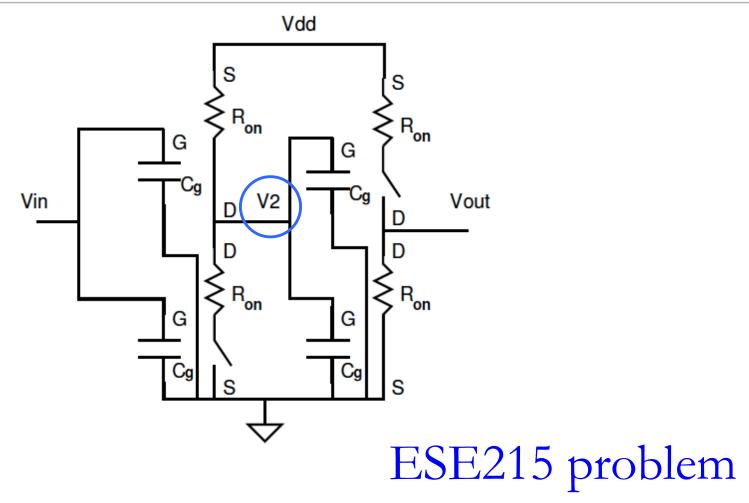




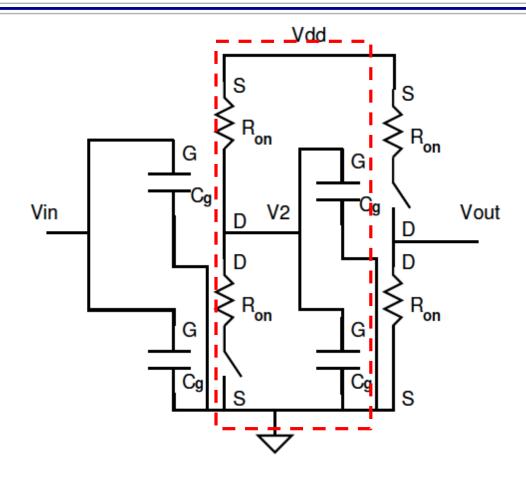
Zero-Order Model to Set Switches



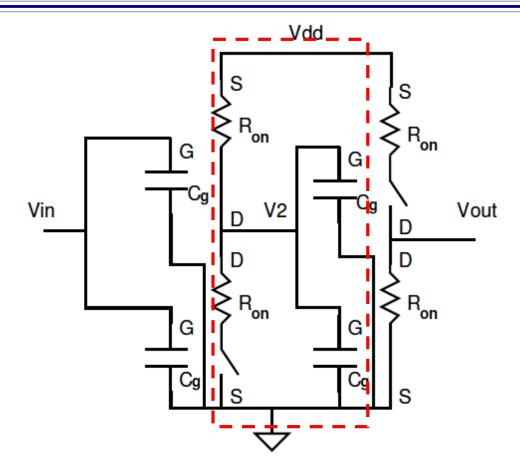
 \Box What is V_{IN} for this switch pattern?



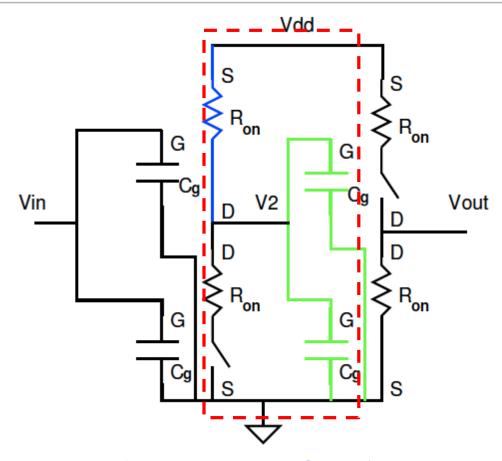
□ Leaves an RC Circuit we can analyze



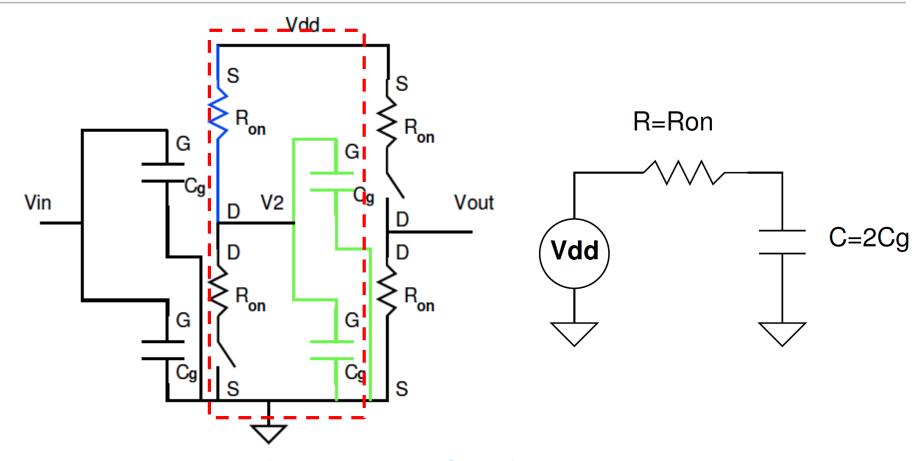
- □ Look at intermediary node V₂
 - Connected to output of stage 1 and input of stage 2



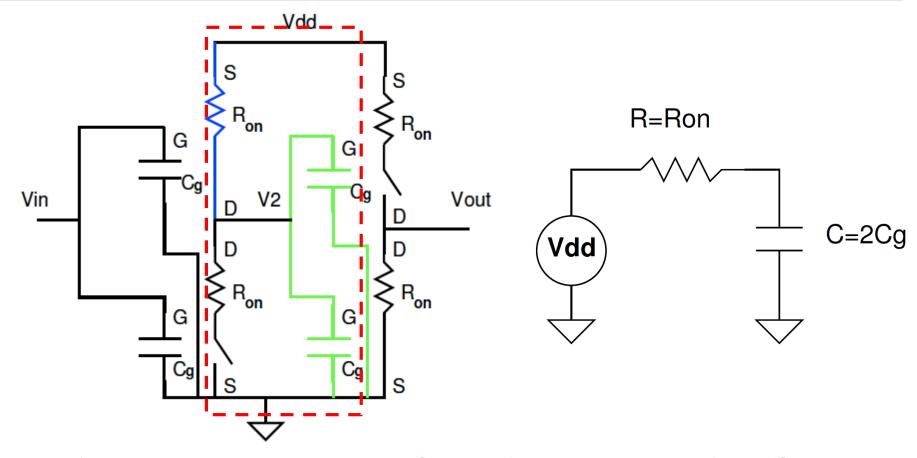
■ What is equivalent circuit for the gate output of stage 1 driving V_2 ? What is load on the output of stage 1?



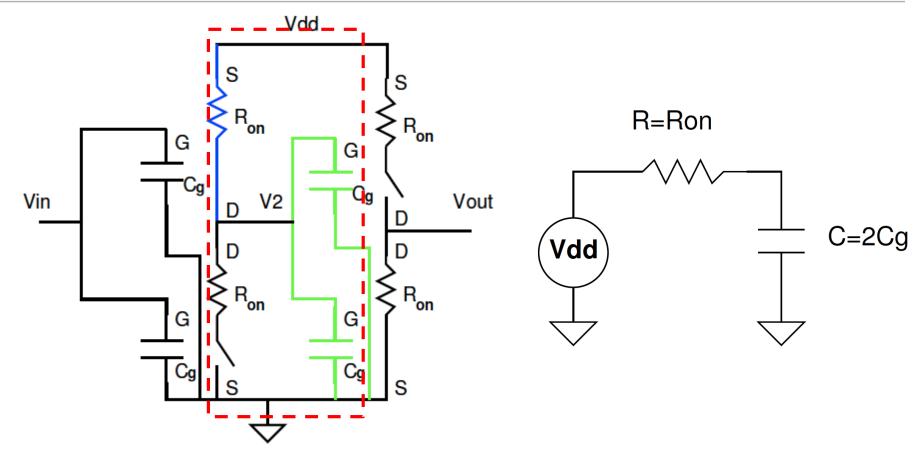
- □ Stage 1 equivalent circuit for the gate output
- Load on V₂
 - Capacitive, input of stage 2



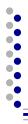
- □ Stage 1 equivalent circuit for the gate output
- Load on V₂
 - Capacitive, input of stage 2



■ What is time constant of V_2 when V_{in} switches from V_{DD} to 0?



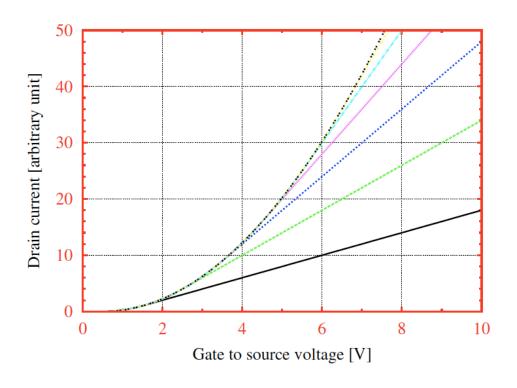
- □ What is time constant of V_2 when V_{in} switches from V_{DD} to 0?
 - $= \tau = 2R_{on}C_g$



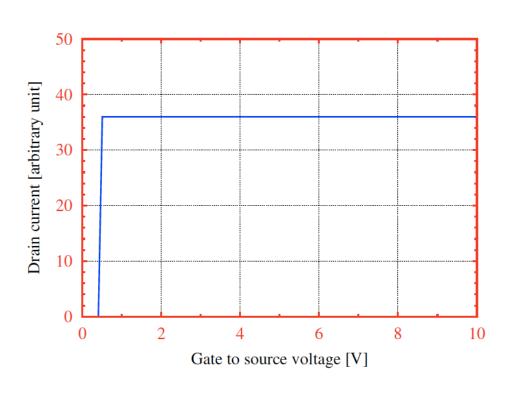
First-Order Model

- Includes settling times/delay
- Voltage settling with capacitive loads
 - At least some basis for reasoning about delay

IV curve



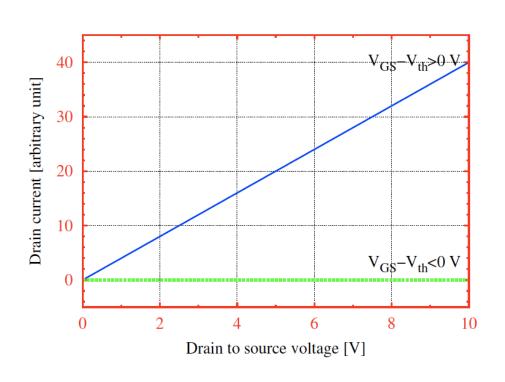
1st Order



What is still missing?

IV curve

1st Order



What is still missing?

- What happens at intermediate voltages?
 - When the input is not rail-to-rail (not just gnd or V_{dd} inputs)
- Details of dynamics, including...
 - Input transition is not an ideal step
 - Intermediate drive strengths change with V_{GS}
 - Drain resistance changes
- Sub-threshold operation
 - When $V_{gs} < V_{th}$



Design: Engineering Control

- $lue{}$ V_{th}
 - Process engineer
- □ Drive strength (R_{on})
 - Circuit engineer
 - Control with sizing transistors
- □ Supply voltages (V_{dd})
 - Range set by process engineer
 - Detail use by circuit engineer

Big Ideas

- MOSFET Transistor as switch
 - With limited drive
- Purpose-driven simplified modeling
 - Aid reasoning, sanity check, simplify design
- Analysis methodology
 - Zero order to understand switch state (logic)
 - First-order to get equivalent RC circuit (delay)

Admin

- Diagnostic grades recorded
 - Solutions posted online (pdf in Canvas)
 - Make sure you understand
 - Diagnose what you need to review and study
 - Karnaugh maps (minimum sum of products), RC capacitive settling (time constant), and wire resistive and capacitive properties
- □ HW 1 due Tuesday 9/14 next week
 - Because you need Monday lecture for noise margins
 - Can look at last year's lecture slides if you want to look ahead
 - HW due following Monday 9/20