ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems

Lec 32: December 1, 2021 Transmission Line

- □ Saw in action in lab
- □ Where transmission lines arise?
- General wire formulation
- Lossless Transmission Line
- End of Transmission Line?
- Termination
- Discuss Lossy
- Implications

Where Transmission Lines Arise

- □ Cable: coaxial
- **D** PCB
 - Strip line
 - Microstrip line
- □ Twisted Pair (Cat5)

Transmission Lines

- □ How did the traces behave in lab?
- How does this differ from
 - Ideal equipotential?
 - RC-wire on chip?

- □ This is what long wires/cables look like
 - Aren't an ideal equipotential
 - Signals take time to propagate
 - Maintain shape of input signal
 - Within limits
 - Shape and topology of wiring effects how signals propagate

- Need theory/model to support design
 - Reason about behavior
 - Understand what can cause noise
 - Engineer high performance/speed communication

Wire Formulation

From the Way Way Back

- Problem: A long cable the trans-atlantic telephone cable is laid out connecting NY to London. We would like analyze the electrical properties of this cable.
- □ For simplicity, assume the cable has a uniform cross-sectional configuration (shown as two wires here)

Trans-Atlantic Cable

- Can we do it with circuit theory?
- □ Fundamental problem with circuit theory is that it assumes that the speed of light is infinite. So all signals are in phase: $V(z) = V(z + \ell)$
- □ Consequently, all variations in space are ignored: $\partial/\partial z \rightarrow 0$
- □ This allows the lumped circuit approximation

Lumped Circuit Properties of Cable

□ Shorted Line: The long loop has inductance since the magnetic flux ψ is not negligible (long cable) (ψ = LI)

 Open Line: The cable also has substantial capacitance (Q = CV)

In general, our "wires" have distributed R, L, C components

- □ When R dominates L
 - We have the distributed RC Wires
 - Typical of on-chip wires in ICs
 - What is RC response to step?

- When resistance is negligible
 - Have LC wire = Lossless Transmission Line
 - No energy dissipation (loss) through R's
 - More typical of printed circuit board (PCB) wires and bond wires

Build Intuition from LC (Preclass 2)

What did one LC do?What will chain do?

Build Intuition from LC (Preclass 2)

- Pulses travel as waves without distortion
 - (up to a characteristic frequency)

Step Reponse 20 element LC Ladder

s

RC Ladder

S

- □ Now voltage is a function of time **and** position
 - Position along wire distance from source
- □ Want to get V(x,t)
 - And I(x,t)

Setup Relations (Preclass 4)

- □ *i* is a node, x is the distance from source, Δx is distance between nodes
- Position along wire: $x=i X \Delta x$

• So $V_i(t) = V(x=i\Delta x, t)$

- $\square a) \text{ KCL } \textcircled{a} \text{ V}_i: \text{I}_i \text{-} \text{I}_{i+1} =$
- **b**) I_{ci} =
- $\square \quad d) \ V_{i^-} V_{i^-1} =$

Setup Relations (Preclass 4)

- a) KCL (a) $V_i: I_i I_{i+1} =$ b) $I_{ci} =$ d) $V_i - V_{i-1} =$ $I_i - I_{i+1} = C \frac{dV_i}{dt}$ $V_i - V_{i-1} = -L \frac{dI_i}{dt}$
- *i* is a node, but has spatial dimension along the Tline
 - No longer agnostic of wire length
- V_i changes at different positions

Setup Relations (Preclass 4)

- a) KCL (a) $V_i: I_i I_{i+1} = I_i = C \frac{dV_i}{dt} \Rightarrow -\frac{dI_i}{dx} = C \frac{dV_i}{dt}$ b) $I_{ci} = I_i - I_{i+1} = C \frac{dV_i}{dt} \Rightarrow -\frac{dI_i}{dx} = C \frac{dV_i}{dt}$ c) $V_i - V_{i-1} = -L \frac{dI_i}{dt} \Rightarrow \frac{dV_i}{dx} = -L \frac{dI_i}{dt}$
- *i* is a node, but has spatial dimension along the Tline
 - No longer agnostic of wire length
- V_i changes at different positions

□ Eliminate I? Differential equation in voltage only.

$$I_i - I_{i+1} = C \frac{dV_i}{dt}$$

□ Take derivative with respect to time

$$\frac{dI_i}{dt} - \frac{dI_{i+1}}{dt} = C\frac{d^2V_i}{dt^2}$$

 $\frac{dI_i}{dt} - \frac{dI_{i+1}}{dt} = C\frac{d^2V_i}{dt^2}$

 $\frac{dV_i}{dx} = -L\frac{dI_i}{dt}$

□ Eliminate Is ?

 $\frac{dI_i}{dt} - \frac{dI_{i+1}}{dt} = C\frac{d^2V_i}{dt^2}$

□ Eliminate Is ?

 $\frac{dI_i}{dt} - \frac{dI_{i+1}}{dt} = C\frac{d^2V_i}{dt^2}$

 $\frac{dV_i}{dx} = -L\frac{dI_i}{dt}$ $\frac{dV_{i+1}}{dx} = -L\frac{dI_{i+1}}{dt}$

□ Eliminate Is ?

$$\frac{dI_i}{dt} - \frac{dI_{i+1}}{dt} = C \frac{d^2 V_i}{dt^2}$$
$$- \frac{1}{L} \frac{dV_i}{dx} - \left(-\frac{1}{L} \frac{dV_{i+1}}{dx} \right) = C \frac{d^2 V_i}{dt^2}$$
$$\frac{dV_{i+1}}{dx} - \frac{dV_i}{dx} = LC \frac{d^2 V_i}{dt^2}$$
$$\frac{d^2 V_i}{dx^2} = LC \frac{d^2 V_i}{dt^2}$$

• Wave equation:

$$\frac{\partial^2 V}{\partial x^2} = LC \frac{\partial^2 V}{\partial t^2}$$

• Solution:

$$V(x,t) = A + Be^{x - wt}$$

• What is w?

• Wave equation:

$$\frac{\partial^2 V}{\partial x^2} = LC \frac{\partial^2 V}{\partial t^2}$$

• Solution:

$$V(x,t) = A + Be^{x - wt}$$

• What is w?

$$Be^{x-wt} = LCw^{2}Be^{x-wt}$$
$$w = \sqrt{\frac{1}{LC}}$$
 wis the rate

w is the rate of propagation

- L=1uH
- C=1pFWhat is w?

Delay linear in length

RC wire delay quadratic in length **RC** Ladder 1.2 src V1 1 V2 VЗ 0.8 V4 $\sqrt{5}$ 0.6 > INTERNAL DIST. REPORTED AND ADDRESS OF ADDRESS 0.4 REALEMENTER INTEL 0.2 0 5e-09 1e-09 2e-09 3e-09 4e-09 0 S

Solution:

$$V(x,t) = A + Be^{x - wt}$$

• Rate of propagation, w:

$$w = \sqrt{\frac{1}{LC}}$$

Previously:

$$CL = \varepsilon \mu$$

Solution:

$$V(x,t) = A + Be^{x - wt}$$

• Rate of propagation, w:

$$w = \sqrt{\frac{1}{LC}}$$

Previously:

 $CL = \varepsilon \mu$

$$w = \sqrt{\frac{1}{\varepsilon\mu}} = \sqrt{\frac{1}{\varepsilon_0\varepsilon_r\mu_0\mu_r}}$$
$$c^2 = \frac{1}{\varepsilon_0\mu_0} \Longrightarrow$$
$$w = \frac{c}{\sqrt{\varepsilon_r\mu_r}}$$

40 Stages
L=100nH
C=1pF
Stage delay? How long to propagate?

- What is the resistance at V_i ?
 - Q needed to charge C to V_i ?
 - I_i given velocity w?
 - $\bullet \quad R = V_i / I_i?$

- $Q=CV_i$
- $I_i = dQ/dt$
- Moving at rate w
- $I_i = wCV_i$
- $R=V_i/I_i=1/(wC)$

$$\Box \ Z_0 = \mathbf{R}$$

$$R = \frac{\sqrt{LC}}{C} = \sqrt{\frac{L}{C}} = Z_0$$

Assuming infinitely long wire, how does the impedance look at V_i, V_{i+1}, V_{i+2}?

Assuming infinitely long wire, how does the impedance look at V_i, V_{i+1}, V_{i+2}?

□ Transmission lines have a characteristic impedance

$Z_0 = \sqrt{\frac{L}{C}}$

Infinite Lossless Transmission Line

- □ Signal propagates as wave down transmission line
 - Delay linear in wire length, if resistance negligible
 - Rate of propagation
 - Characteristic impedance

$$w = \frac{1}{\sqrt{LC}} = \frac{c}{\sqrt{\varepsilon_r \mu_r}}$$
$$Z_0 = \sqrt{\frac{L}{C}}$$

- □ Project 2 due Friday 12/3
- □ HW 7 out on Friday
 - Due 12/10