ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems

Lec 34: December 6, 2021 Transmission Lines Implications

Transmission Line Agenda

- See in action in lab
- Where transmission lines arise?
- General wire formulation
- Lossless Transmission Line
- **Impedance**
- End of Transmission Line?
 - Open, short, matched
- Physical Geometry
- Discuss Lossy
- Implications/Effects

- Data travels as waves
- Line has Impedance
- □ May reflect at end of line

□ What happens at the end of the transmission line?

4

D Termination in parallel at Sink

Termination in series at Source

Transmission Lines Specifics

Characteristics arise form their geometry

- Inner core conductor: radius r
- Insulator: out to radius R
- Outer core shield (ground)

$$L = \left(\frac{\mu}{2\pi}\right) \ln\left(\frac{R}{r}\right)$$

□ RG-58
$$Z_0 = 50\Omega$$
 – networking

□ RG-59
$$Z_0 = 75\Omega$$
 – video

□ HDMI
$$Z_0 = 100\Omega$$
 – video

$$Z_0 = \left(\frac{1}{2\pi}\right) \left(\sqrt{\frac{\mu}{\varepsilon}}\right) \ln\left(\frac{R}{r}\right)$$

□ Stripline

Trace between ground planes

$$Z_0 = \left(\frac{1}{4}\right) \left(\sqrt{\frac{\mu}{\varepsilon}}\right) \ln\left(\frac{1 + \frac{W}{b}}{\frac{t}{b} + \frac{W}{b}}\right)$$

- Microstrip line
 - Trace over single supply plane

$$Z_{0} = \left(\frac{1}{2\pi}\right) \left(\sqrt{\frac{\mu}{(0.475\varepsilon_{r} + 0.67)\varepsilon_{0}}}\right) \ln\left(\frac{4h}{0.536W + 0.67t}\right)$$

- □ Category 5 ethernet cable
 - Z₀=100Ω
 - w=0.64c₀

Implications

(you should be able to reason about this)

□ 25 meter category-5e cable (Z_0 =100 Ω , w=0.64c)

- $c = 3x10^8 \text{ m/s}$
- □ Supporting 1Gb/s ethernet
 - 4 pairs at 250Mb/s

□ a) Time to send data from one end to the other?

□ b) Time between bits at 250Mb/s?

c) Bits on each pair in the cable?

- For properly terminated transmission line
 - Do not need to wait for bits to arrive at sink
 - Can stick new bits onto wire

□ What limits? (why only 250Mb/s)

Limits to Bit Pipelining (Preclass 3)

□ What limits? (why only 250Mb/s)

- Risetime/signal distortion
- Clocking

- Skew
- Jitter
- For bus
 - Wire length differences between lines

- □ Watch bits over line on scope
 - Look at distortion
 - "open" eye clean place to sample
 - Consistent timing of transitions
 - Well defined high/low voltage levels

- Generate an input bit sequence pattern that contains all possible combinations of B bits (e.g., B=3 or 4), so a sequence of 2^{B*}B bits. (Otherwise, a random sequence of comparable length is fine.)
- Transmit the corresponding discrete time sequence x[n] over the channel (2^{B*}B*N samples, if there are N samples/bit)

- \Box Instead of one long plot of y[n], plot the response as an eye diagram:
 - a. break the plot up into short segments, each containing K*N samples, starting at sample 0, K*N, 2K*N, 3K*N, ... (e.g., K=2 or 3 # bits at a time)
 - b. plot all the short segments on top of each other

- □ Watch bits over line on scope
 - Look at distortion
 - "open" eye clean place to sample
 - Consistent timing of transitions
 - Well defined high/low voltage levels

https://www.youtube.com/watch?v=mnugUjaMN70

- □ Watch bits over line on scope
 - Look at distortion
 - "open" eye clean place to sample
 - Consistent timing of transitions
 - Well defined high/low voltage levels

Interpretation of Eye Diagram

Eye diagram before deconvolution

Termination / Mismatch

- Wires do look like these transmission lines
- We are terminating them in some way when we connect to chip (gate)
 - Need to be deliberate about how terminate, if we care about high performance

Where is Mismatch?

- Vias
- Wire corners
- Branches
- Connectors
- Board-to-cable
- □ Cable-to-cable

□ What prevents us from having a 500km cat-5 cable?

□ How to measure resistance across a cable?

what is resistance across 200m cable?

Lossy Transmission Line (Preclass 4)

□ How do addition of R's change?

- Concretely, discretely think about R=0.2Ω every meter on $Z_0=100\Omega$
 - what does each R do? Voltage impact?

Lossy Transmission Line

□ Each R is a voltage divider

• Each R is a mismatched termination

$$V_{t} = V_{i} \left(\frac{2(R + Z_{0})}{(R + Z_{0}) + Z_{0}} \right)$$

$$V_{i+1} = V_t \left(\frac{Z_0}{R + Z_0}\right)$$

1

$$\begin{split} V_{i+1} &= V_i \Biggl(\frac{2(R+Z_0)}{(R+Z_0)+Z_0} \Biggr) \Biggl(\frac{Z_0}{R+Z_0} \Biggr) \\ V_{snk} &= V_{src} \Biggl(\Biggl(\frac{2(R+Z_0)}{(R+Z_0)+Z_0} \Biggr) \Biggl(\frac{Z_0}{R+Z_0} \Biggr) \Biggr)^N \end{split}$$

Lossy Transmission Line (Preclass 4)

□ How long before drop voltage by half? R=0.2Ω every meter on Z_0 =100Ω

$$V_{snk} = V_{src} \left(\left(\frac{2(R + Z_0)}{(R + Z_0) + Z_0} \right) \left(\frac{Z_0}{R + Z_0} \right) \right)^N$$

- □ What prevents us from having a 500km cat-5 cable?
 - Not actually lossless!

More Examples...

Time Permitting

Impedance Change (Preclass 5)

- □ What happens if there is an impedance change in the wire? $Z_0=75\Omega$, $Z_1=50\Omega$
 - What reflections and transmission do we get?

 $Z_0 = 75, Z_1 = 50$ (Preclass 5)

- □ At junction:
 - Reflects
 - $V_r = (50-75)/(50+75)V_i = -0.2V_i$
 - Transmits
 - $V_t = (100/(50+75))V_i = 0.8V_i$

+ z0 + Delay=4ns $\frac{1}{\text{Delay}=4ns}$

 $\pm \frac{Zl}{Delay=4ns}$

5

Impedance Change
$$Z_0=75$$
, $Z_1=50$ (Preclass 5)

What happens at branch?

\Box Transmission line sees two Z_0 in parallel

• Looks like $Z_0/2$

- $V_r = (25-50)/(25+50)V_i = -0.33V_i$
- Transmits
 - $V_t = (50/(25+50))V_i = 0.67V_i$

- □ What happens at end?
- □ If ends in matched, parallel termination
 - No further reflections

□ What happens if branch open circuit?

□ And source termination?

Branch with Open Circuit

- □ Reflects at end of open-circuit stub
- □ Reflection returns to branch
 - ...and encounters branch again
 - Send transmission pulse to both
 - Source and other branch
- Sink sees original pulse as multiple smaller pulses spread out over time

Penn ESE 370 Fall 2021 – Khanna

44

• Common to have many modules on a bus

- E.g. PCI slots
- DIMM slots for memory
- \square High speed \rightarrow bus lines are trans. lines

Ideal

• Open circuit, no load

□ Impact of capacitive load (stub) at drop?

• If tight/regular enough, change Z of line

□ Long wire stub?

- Looks like branch
 - may produce reflections

Transmission Line Noise

- Frequency limits
- Imperfect termination
- Mismatched segments/junctions/vias/connectors
- Loss due to resistance in line
 - Limits length

- Transmission lines
 - high-speed
 - high throughput
 - long-distance signaling
- **D** Termination
- Signal quality losses

 $=\frac{1}{\sqrt{LC}}=\frac{c_0}{\sqrt{\varepsilon_r\mu_r}}$ ${\mathcal W}$

$$V_r = V_i \left(\frac{R - Z_0}{R + Z_0}\right)$$

- □ Friday HW 7 due
- □ Final (F 12/17)
 - 12-2pm in Moore 212
 - Cumulative: Lec 1 35
 - Big Idea slides from each lecture
 - Finals 2010—2020 online
 - Friday lecture review
 - TA review session before exam
 - TBD, watch Piazza. Maybe a poll.