ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems

Lec 35: December 8, 2021
Repeaters in Wiring

Previously

- Transmission line (LC wire) wire delay scales linearly with length
- (Unbuffered) RC wire delay scales quadratically with length

Reminder: Wire Delay

- Wire N units long: $\quad R_{\text {wire }}=N \times R_{\text {unit }}$
$=\mathrm{R}_{\text {unit }}{ }^{*} \mathrm{C}_{\text {unit }} \mathrm{N}^{2} / 2$
- With

$$
\mathrm{C}_{\text {wire }}=\mathrm{N} \times \mathrm{C}_{\text {unit }}
$$

- $\mathrm{R}_{\text {unit }}=1 \mathrm{k} \Omega$
- $\mathrm{C}_{\mathrm{unit}}=1 \mathrm{pF}$

Today: Back to RC Wire

- RC (on-chip) Interconnect Buffering

Delay of Wire (preclass 1)

- Long Wire: 1 mm
- $\mathrm{R}_{\mathrm{u}}=60 \mathrm{~K} \Omega$ per 1 mm of wire
- $\mathrm{C}_{\mathrm{u}}=0.16 \mathrm{pF}$ per 1 mm of wire
- Driven by buffer $\left(\mathrm{R}_{0}=25 \mathrm{~K} \Omega, \mathrm{C}_{0}=0.01 \mathrm{fF}\right)$
- $\mathrm{R}_{\text {buf }}=25 \mathrm{~K} \Omega$
- $\mathrm{C}_{\text {self }}=0.02 \mathrm{fF}$
- Loaded by identical buffer

Formulate Delay (preclass 1)

Delay of buffer driving wire?

Calculate Delay

- $\mathrm{C}_{\text {load }}=2 \mathrm{C}_{0}=.02 \mathrm{fF}$
$\square \mathrm{R}_{\text {buf }}=25 \mathrm{~K} \Omega$
$-\mathrm{C}_{\text {self }}=0.02 \mathrm{fF}$
- $\mathrm{C}_{\text {wire }}=\mathrm{L}^{*} \mathrm{C}_{\mathrm{u}}=.16 \mathrm{pF}$
- $\mathrm{R}_{\text {vire }}=\mathrm{L} * \mathrm{R}_{\mathrm{u}}=60 \mathrm{~K} \Omega$

$$
R_{\text {buf }} \times\left(C_{\text {self }}+C_{\text {wire }}+C_{\text {load }}\right)+0.5 R_{\text {wire }} \times C_{\text {wire }}+R_{\text {wire }} \times C_{\text {load }}
$$

Calculate Delay

- $\mathrm{C}_{\text {load }}=2 \mathrm{C}_{0}=.02 \mathrm{fF}$
- $\mathrm{R}_{\text {buf }}=25 \mathrm{~K} \Omega$
- $\mathrm{C}_{\text {self }}=0.02 \mathrm{fF}$

8.8ns

- $\mathrm{C}_{\text {wire }}=\mathrm{L}^{*} \mathrm{C}_{\mathrm{u}}=.16 \mathrm{pF}$
- $\mathrm{R}_{\text {wire }}=\mathrm{L}^{*} \mathrm{R}_{\mathrm{u}}=60 \mathrm{~K} \Omega$

$$
R_{\text {buf }} \times\left(C_{\text {self }}+C_{\text {wire }}+C_{\text {load }}\right)+0.5 R_{\text {wire }} \times C_{\text {wire }}+R_{\text {wire }} \times C_{\text {load }}
$$

$$
4 n s+4.8 n s+1.2 p s
$$

Buffering Wire

Buffering Wire: L/2

- $\mathrm{C}_{\text {load }}=2 \mathrm{C}_{0}=.02 \mathrm{fF}$
- $\mathrm{R}_{\text {buf }}=25 \mathrm{~K} \Omega$
$\square \mathrm{C}_{\text {self }}=.02 \mathrm{fF}$
- $\mathrm{C}_{\text {wire }}=\mathrm{L} / 2^{*} \mathrm{C}_{\mathrm{u}}=.08 \mathrm{pF}$
- $\mathrm{R}_{\text {wire }}=\mathrm{L} / 2 * \mathrm{R}_{\mathrm{u}}=30 \mathrm{~K} \Omega$

Buffering Wire: L/2

$$
\square \mathrm{C}_{\text {load }}=2 \mathrm{C}_{0}=.02 \mathrm{fF}
$$

$$
\square \mathrm{R}_{\mathrm{buf}}=25 \mathrm{~K} \Omega
$$

$$
\square \mathrm{C}_{\text {self }}=.02 \mathrm{fF}
$$

$$
\text { - } \mathrm{C}_{\text {wire }}=\mathrm{L} / 2 * \mathrm{C}_{\mathrm{u}}=.08 \mathrm{pF}
$$

$$
\text { - } \mathrm{R}_{\text {wire }}=\mathrm{L} / 2 * \mathrm{R}_{\mathrm{u}}=30 \mathrm{~K} \Omega
$$

$$
R_{\text {buf }} \times\left(C_{\text {self }}+C_{\text {wire }}+C_{\text {load }}\right)+0.5 R_{\text {wire }} \times C_{\text {wire }}+R_{\text {wire }} \times C_{\text {load }}
$$

$$
2 n s+1.2 n s+.6 p s=3.2 n s
$$

Buffering Wire: L/2

$$
\square \mathrm{C}_{\text {load }}=2 \mathrm{C}_{0}=.02 \mathrm{fF}
$$

$$
\text { - } \mathrm{R}_{\mathrm{buf}}=25 \mathrm{~K} \Omega
$$

$$
\square \mathrm{C}_{\text {self }}=.02 \mathrm{fF}
$$

$6.4 n s$

- $\mathrm{C}_{\text {wire }}=\mathrm{L} / 2^{*} \mathrm{C}_{\mathrm{u}}=.08 \mathrm{pF}$
- $\mathrm{R}_{\text {wire }}=\mathrm{L} / 2 * \mathrm{R}_{\mathrm{u}}=30 \mathrm{~K} \Omega$

$$
R_{\text {buff }} \times\left(C_{\text {self }}+C_{\text {wire }}+C_{\text {load }}\right)+0.5 R_{\text {wire }} \times C_{\text {wire }}+R_{\text {wire }} \times C_{\text {load }}
$$

$$
2 n s+1.2 n s+.6 p s=3.2 n s
$$

Buffering Wire: L/N (preclass 2)

Wire of Length	Delay (ns)	Number in 1mm $\mathbf{(N)}$	Total Delay for 1mm (ns)
1 mm	8.8 ns	1	8.8 ns
0.5 mm	3.2 ns	2	6.4 ns
0.1 mm		10	
0.01 mm		100	
0.001 mm			

$$
R_{\text {buf }} \times\left(C_{\text {self }}+C_{\text {wire }}+C_{\text {load }}\right)+0.5 R_{\text {wire }} \times C_{\text {wire }}+R_{\text {wire }} \times C_{\text {load }}
$$

Buffering Wire: L/N (preclass 2)

Wire of Length	Delay (ns) $\mathbf{N u m})$ $\mathbf{N} \mathbf{~ N u m ~}$	Total Delay for 1mm (ns)	
1 mm	8.8 ns	1	8.8 ns
0.5 mm	3.2 ns	2	6.4 ns
0.1 mm	0.45 ns	10	4.5 ns
0.01 mm	.041 ns	100	4.1 ns
0.001 mm	.005 ns	1000	5 ns

$$
R_{\text {buf }} \times\left(C_{\text {self }}+C_{\text {wire }}+C_{\text {load }}\right)+0.5 R_{\text {wire }} \times C_{\text {wire }}+R_{\text {wire }} \times C_{\text {load }}
$$

N Buffers (preclass 3)

$$
\begin{aligned}
& R_{\text {buf }} \times\left(C_{\text {self }}+C_{\text {wire }}+C_{\text {load }}\right)+0.5 R_{\text {wire }} \times C_{\text {wire }}+R_{\text {wire }} \times C_{\text {load }} \\
& \text { a Delay Equation for N buffers? }
\end{aligned}
$$

N Buffers (preclass 3)

$$
R_{\text {buf }} \times\left(C_{\text {self }}+C_{\text {wire }}+C_{\text {load }}\right)+0.5 R_{\text {wire }} \times C_{\text {wire }}+R_{\text {wire }} \times C_{\text {load }}
$$

- Delay Equation for N buffers?

$$
N\left(R_{\text {buf }}\left(C_{\text {self }}+\frac{C_{\text {wire }}}{N}+C_{\text {load }}\right)+0.5\left(\frac{R_{\text {wire }}}{N} \cdot \frac{C_{\text {wire }}}{N}\right)+\frac{R_{\text {wire }}}{N} \cdot C_{\text {load }}\right)
$$

N Buffers

- Delay Equation for N buffers?

$$
\begin{aligned}
& N\left(R_{\text {but }}\left(C_{\text {self }}+\frac{C_{\text {wire }}}{N}+C_{\text {load }}\right)+0.5\left(\frac{R_{\text {wire }}}{N} \cdot \frac{C_{\text {wire }}}{N}\right)+\frac{R_{\text {wire }}}{N} \cdot C_{\text {load }}\right) \\
& N \cdot R_{\text {buf }}\left(C_{\text {self }}+\frac{C_{\text {wire }}}{N}+C_{\text {load }}\right)+N \cdot 0.5\left(\frac{R_{\text {wire }}}{N} \cdot \frac{C_{\text {wire }}}{N}\right)+N \cdot \frac{R_{\text {wire }}}{N} \cdot C_{\text {load }} \\
& N \cdot R_{\text {buf }}\left(C_{\text {self }}+C_{\text {load }}\right)+R_{\text {buf }} \times C_{\text {wire }}+0.5\left(\frac{1}{N}\right) R_{\text {wire }} C_{\text {wire }}+R_{\text {wire }} C_{\text {load }}
\end{aligned}
$$

Minimize Delay (preclass 4)

- Minimize delay?

Minimize Delay (preclass 4)

- Minimize delay
- Derivative with respect to N

$$
\begin{gathered}
N \cdot R_{b u f}\left(C_{\text {self }}+C_{\text {load }}\right)+R_{\text {buf }} \times C_{\text {wire }}+0.5\left(\frac{1}{N}\right) R_{\text {wire }} C_{\text {wire }}+R_{\text {wire }} C_{\text {load }} \\
0=R_{\text {buf }}\left(C_{\text {self }}+C_{\text {load }}\right)-0.5\left(\frac{1}{N^{2}}\right) R_{\text {wire }} C_{\text {wire }}
\end{gathered}
$$

Solve for N (preclass 4)

$$
\begin{gathered}
0=R_{\text {but }}\left(C_{\text {self }}+C_{\text {load }}\right)-0.5\left(\frac{1}{N^{2}}\right) R_{\text {wire }} C_{\text {wire }} \\
R_{\text {buf }}\left(C_{\text {seff }}+C_{\text {load }}\right)=0.5\left(\frac{1}{N^{2}}\right) R_{\text {wire }} C_{\text {wire }} \\
N^{2}=\frac{0.5 R_{\text {wire }} C_{\text {wire }}}{R_{\text {buf }}\left(C_{\text {seff }}+C_{\text {load }}\right)} \\
N=\sqrt{\frac{0.5 R_{\text {wire }} C_{\text {wire }}}{R_{\text {buf }}\left(C_{\text {seff }}+C_{\text {ood }}\right)}}
\end{gathered}
$$

Minimize Delay (preclass 4)

Equalizes delays from buffer and wire

$$
N=\sqrt{\frac{0.5 R_{\text {wire }} C_{\text {wire }}}{R_{\text {buf }}\left(C_{\text {self }}+C_{\text {load }}\right)}}
$$

$N \cdot R_{\text {buf }}\left(C_{\text {self }}+C_{\text {load }}\right)+R_{\text {buf }} C_{\text {wire }}+0.5\left(\frac{1}{N}\right) R_{\text {wire }} C_{\text {wire }}+R_{\text {wire }} C_{\text {load }}$

Delay with Optimal N (p1eclass 4) $N=\sqrt{\frac{0.5 R_{\text {wire }} C_{\text {wire }}}{R_{\text {buf }}\left(C_{\text {self }}+C_{\text {load }}\right)}}$

$$
N \cdot R_{b u f}\left(C_{\text {self }}+C_{\text {load }}\right)+R_{\text {buf }} C_{\text {wire }}+0.5\left(\frac{1}{N}\right) R_{\text {wire }} C_{\text {wire }}+R_{\text {wire }} C_{\text {load }}
$$

Delay with Optimal N

$$
N=\sqrt{\frac{0.5 R_{\text {wire }} C_{\text {wire }}}{R_{\text {buf }}\left(C_{\text {self }}+C_{\text {lood }}\right)}}
$$

$$
N \cdot R_{\text {buf }}\left(C_{\text {self }}+C_{\text {load }}\right)+R_{\text {buf }} C_{\text {wire }}+0.5\left(\frac{1}{N}\right) R_{\text {wire }} C_{\text {wire }}+R_{\text {wire }} C_{\text {load }}
$$

$$
\sqrt{\frac{0.5 R_{\text {wire }} C_{\text {wire }}}{R_{\text {buf }}\left(C_{\text {self }}+C_{\text {load }}\right)}} \cdot R_{\text {buf }}\left(C_{\text {self }}+C_{\text {load }}\right)+R_{\text {buf }} C_{\text {wire }}+0.5\left(\sqrt{\left.\frac{R_{\text {buf }}\left(C_{\text {self }}+C_{\text {load }}\right)}{0.5 R_{\text {wire }} C_{\text {wire }}}\right)}\right) R_{\text {wire }} C_{\text {wire }}+R_{\text {wire }} C_{\text {load }}
$$

Delay with Optimal N

$$
N=\sqrt{\frac{0.5 R_{\text {wire }} C_{\text {wire }}}{R_{\text {buff }}\left(C_{\text {self }}+C_{\text {load }}\right)}}
$$

$$
N \cdot R_{\text {buf }}\left(C_{\text {self }}+C_{\text {load }}\right)+R_{\text {buf }} C_{\text {wire }}+0.5\left(\frac{1}{N}\right) R_{\text {wire }} C_{\text {wire }}+R_{\text {wire }} C_{\text {load }}
$$

$$
\sqrt{\frac{0.5 R_{\text {wire }} C_{\text {wire }}}{R_{\text {buf }}\left(C_{\text {self }}+C_{\text {load }}\right)}} \cdot R_{\text {buf }}\left(C_{\text {self }}+C_{\text {load }}\right)+R_{\text {buf }} C_{\text {wire }}+0.5\left(\sqrt{\left.\frac{R_{\text {buf }}\left(C_{\text {self }}+C_{\text {load }}\right)}{0.5 R_{\text {wire }} C_{\text {wire }}}\right)}\right) R_{\text {wire }} C_{\text {wire }}+R_{\text {wire }} C_{\text {load }}
$$

$$
\sqrt{0.5 R_{\text {wire }} C_{\text {wire }}\left(R_{\text {buf }}\left(C_{\text {self }}+C_{\text {load }}\right)\right)}+R_{\text {buf }} C_{\text {wire }}+\sqrt{0.5 R_{\text {wire }} C_{\text {wire }}\left(R_{\text {buf }}\left(C_{\text {self }}+C_{\text {load }}\right)\right)}+R_{\text {wire }} C_{\text {load }}
$$

Delay with Optimal N

$$
N=\sqrt{\frac{0.5 R_{\text {wire }} C_{\text {wire }}}{R_{\text {buff }}\left(C_{\text {self }}+C_{\text {load }}\right)}}
$$

$$
N \cdot R_{\text {but }}\left(C_{\text {self }}+C_{\text {load }}\right)+R_{\text {buff }} C_{\text {wire }}+0.5\left(\frac{1}{N}\right) R_{\text {wire }} C_{\text {wire }}+R_{\text {wire }} C_{\text {load }}
$$

$$
\sqrt{\frac{0.5 R_{\text {wire }} C_{\text {wire }}}{R_{\text {but }}\left(C_{\text {self }}+C_{\text {load }}\right)}} \cdot R_{\text {but }}\left(C_{\text {self }}+C_{\text {load }}\right)+R_{\text {but }} C_{\text {wire }}+0.5\left(\sqrt{\frac{R_{\text {but }}\left(C_{\text {self }}+C_{\text {load }}\right)}{0.5 R_{\text {wire }} C_{\text {wire }}}}\right) R_{\text {wire }} C_{\text {wire }}+R_{\text {wire }} C_{\text {load }}
$$

$$
\int \sqrt{0.5 R_{\text {wire }} C_{\text {wire }}\left(R_{\text {buf }}\left(C_{\text {self }}+C_{\text {load }}\right)\right)+} R_{\text {buf }} C_{\text {wire }}+\sqrt{0.5 R_{\text {wire }} C_{\text {wire }}\left(R_{\text {but }}\left(C_{\text {self }}+C_{\text {load }}\right)\right)+R_{\text {wire }} C_{\text {load }}}
$$

$$
2 \sqrt{0.5 R_{\text {wire }} C_{\text {wire }}\left(R_{\text {but }}\left(C_{\text {self }}+C_{\text {load }}\right)\right)}+R_{\text {buff }} C_{\text {wire }}+R_{\text {wire }} C_{\text {load }}
$$

Calculate: Delay at Optimum Stages (preclass 4)

- $\mathrm{R}_{\mathrm{u}}=60 \mathrm{~K} \Omega$ per 1 mm of wire
- $\mathrm{C}_{\mathrm{u}}=0.16 \mathrm{pF}$ per 1 mm of wire
- $\mathrm{R}_{\text {buf }}=25 \mathrm{~K} \Omega$
- $\mathrm{C}_{\text {self }}=\mathrm{C}_{\text {load }}=0.02 \mathrm{fF}$

$$
N=\sqrt{\frac{0.5 R_{\text {wire }} C_{\text {wire }}}{R_{\text {buf }}\left(C_{\text {self }}+C_{\text {load }}\right)}}
$$

$$
2 \sqrt{0.5 R_{\text {wire }} C_{\text {wire }}\left(R_{\text {buf }}\left(C_{\text {self }}+C_{\text {load }}\right)\right)}+R_{\text {buf }} C_{\text {wire }}+R_{\text {wire }} C_{\text {load }}
$$

Segment Length (preclass 4)

$$
\begin{array}{ll}
\square \mathrm{R}_{\text {wire }}=\mathrm{L} \times \mathrm{R}_{\text {unit }} \\
\mathrm{C}_{\text {wife }}=\mathrm{L} \times \mathrm{C}_{\text {unit }}
\end{array} \quad L_{\text {seg }}^{*}=\frac{L}{N}
$$

$$
\begin{gathered}
N=\sqrt{0.5\left(\frac{R_{\text {wire }} \times C_{\text {wire }}}{R_{\text {buf }} \times\left(C_{\text {self }}+C_{\text {load }}\right)}\right)} \\
N=L \sqrt{0.5\left(\frac{R_{u} \times C_{u}}{R_{\text {buf }} \times\left(C_{\text {self }}+C_{\text {load }}\right)}\right)} \\
L_{\text {seg }}^{*}=\frac{L}{N}=\sqrt{2\left(\frac{R_{\text {buf }} \times\left(C_{\text {self }}+C_{\text {load }}\right)}{R_{u} \times C_{u}}\right)}
\end{gathered}
$$

Optimal Segment Length

- Delay scales linearly with distance once optimally buffered

$$
\begin{gathered}
L_{\text {seg }}^{*}=\frac{L}{N}=\sqrt{2\left(\frac{R_{\text {buf }} \times\left(C_{\text {self }}+C_{\text {load }}\right)}{R_{u} \times C_{u}}\right)} \\
N=L \sqrt{0.5\left(\frac{R_{u} \times C_{u}}{R_{b u f} \times\left(C_{\text {self }}+C_{\text {load }}\right)}\right)}
\end{gathered}
$$

Buffer Size? (preclass 5)

- How big should buffer be?
- $\mathrm{R}_{\text {buf }}=\mathrm{R}_{0} / \mathrm{W}$
- $\mathrm{C}_{\text {self }}=2 \mathrm{WW}_{\text {dff }}=2 \mathrm{~W} \gamma \mathrm{C}_{0}$
- $\mathrm{C}_{\text {load }}=2$ W C C_{0}

Buffer Size?

- How big should buffer be?
- $\mathrm{R}_{\text {buf }}=\mathrm{R}_{0} / \mathrm{W}$
- $\mathrm{C}_{\text {self }}=2 \mathrm{~W} \mathrm{C}_{\mathrm{dff}}=2 \mathrm{~W} \gamma \mathrm{C}_{0}$
- $\mathrm{C}_{\text {load }}=2 \mathrm{~W} \mathrm{C}_{0}$
$2 \sqrt{0.5 R_{\text {wire }} C_{\text {wire }}\left(R_{\text {buf }}\left(C_{\text {self }}+C_{\text {load }}\right)\right)}+R_{\text {buf }} C_{\text {wire }}+R_{\text {wire }} C_{\text {load }}$
$2 \sqrt{0.5 R_{\text {wire }} C_{\text {wire }}\left(\frac{R_{0}}{W}\left(2 W C_{0}(1+\gamma)\right)\right)}+\frac{R_{0}}{W} C_{\text {wire }}+R_{\text {wire }} \cdot 2 W C_{0}$
$2 \sqrt{0.5 R_{\text {wire }} C_{\text {wire }}\left(2 R_{0} C_{0}(1+\gamma)\right)}+\frac{R_{0}}{W} C_{\text {wire }}+R_{\text {wire }} \cdot 2 W C_{0}$

Optimal W (preclass 5)

- $R_{\text {wire }}=L \times R_{\text {unit }}$
- $C_{\text {wire }}=L \times C_{\text {unit }}$

$$
\begin{gathered}
2 \sqrt{0.5 R_{\text {wire }} C_{\text {wire }}\left(2 R_{0} C_{0}(1+\gamma)\right)}+\frac{R_{0}}{W} C_{\text {wire }}+R_{\text {wire }} \cdot 2 W C_{0} \\
0=2 R_{\text {wire }} C_{0}-R_{0} C_{\text {wire }} \frac{1}{W^{2}} \\
W=\sqrt{\frac{R_{0} C_{\text {wire }}}{2 R_{\text {wire }} C_{0}}}=\sqrt{\frac{R_{0} C_{\text {unit }}}{2 R_{\text {unit }} C_{0}}}
\end{gathered}
$$

Implication W

- $\mathrm{R}_{\text {wire }}=\mathrm{L} \times \mathrm{R}_{\text {unit }}$
$\square C_{\text {wire }}=L \times C_{\text {unit }}$

$$
\begin{gathered}
2 \sqrt{0.5 R_{\text {wire }} C_{\text {wire }}\left(2 R_{0} C_{0}(1+\gamma)\right)}+\frac{R_{0}}{W} C_{\text {wire }}+R_{\text {wire }} \cdot 2 W C_{0} \\
0=2 R_{\text {wire }} C_{0}-R_{0} C_{\text {wire }} \frac{1}{W^{2}} \\
W=\sqrt{\frac{R_{0} C_{\text {wire }}}{2 R_{\text {wire }} C_{0}}}=\sqrt{\frac{R_{0} C_{\text {unit }}}{2 R_{\text {unit }} C_{0}}}
\end{gathered}
$$

$\square \Rightarrow \mathrm{W}$ independent of wire length L

- Depends on technology

Delay at Optimum W (preclass 5) $\quad W=\sqrt{\frac{R_{0}, C_{\text {We }}}{2 R_{\text {Ic. }}} C_{0}}$

$$
2 \sqrt{0.5 R_{\text {wire }} C_{\text {wire }}\left(2 R_{0} C_{0}(1+\gamma)\right)}+\frac{R_{0}}{W} C_{\text {wire }}+R_{\text {wire }} \cdot 2 W C_{0}
$$

Delay at Optimum W

$$
W=\sqrt{\frac{R_{0} C_{\text {wire }}}{2 R_{\text {wire }} C_{0}}}
$$

$$
2 \sqrt{0.5 R_{\text {wire }} C_{\text {wire }}\left(2 R_{0} C_{0}(1+\gamma)\right)}+\frac{R_{0}}{W} C_{\text {wire }}+R_{\text {wire }} \cdot 2 W C_{0}
$$

$$
2 \sqrt{0.5 R_{\text {wire }} C_{\text {wire }}\left(2 R_{0} C_{0}(1+\gamma)\right)}+\frac{R_{0}}{\sqrt{\frac{R_{0} C_{\text {wire }}}{2 R_{\text {wire }} C_{0}}}} C_{\text {wire }}+R_{\text {wire }} \cdot 2 \sqrt{\frac{R_{0} C_{\text {wire }}}{2 R_{\text {wire }} C_{0}} C_{0}}
$$

Delay at Optimum W

$$
W=\sqrt{\frac{R_{0} C_{\text {wire }}}{2 R_{\text {wire }} C_{0}}}
$$

$$
2 \sqrt{0.5 R_{\text {wire }} C_{\text {wire }}\left(2 R_{0} C_{0}(1+\gamma)\right)}+\frac{R_{0}}{W} C_{\text {wire }}+R_{\text {wire }} \cdot 2 W C_{0}
$$

$$
2 \sqrt{0.5 R_{\text {wire }} C_{\text {wire }}\left(2 R_{0} C_{0}(1+\gamma)\right)}+\frac{R_{0}}{\sqrt{\frac{R_{0} C_{\text {wire }}}{2 R_{\text {wire }} C_{0}}}} C_{\text {wire }}+R_{\text {wire }} \cdot 2 \sqrt{\frac{R_{0} C_{\text {wire }}}{2 R_{\text {wire }} C_{0}}} C_{0}
$$

$$
2 \sqrt{0.5 R_{\text {wire }} C_{\text {wire }}\left(2 R_{0} C_{0}(1+\gamma)\right)}+\sqrt{R_{0} C_{\text {wire }} \cdot 2 R_{\text {wire }} C_{0}}+\sqrt{R_{0} C_{\text {wire }} \cdot 2 R_{\text {wire }} C_{0}}
$$

Delay at Optimum W

$$
W=\sqrt{\frac{R_{0} C_{\text {wire }}}{2 R_{\text {wire }} C_{0}}}
$$

$$
2 \sqrt{0.5 R_{\text {wire }} C_{\text {wire }}\left(2 R_{0} C_{0}(1+\gamma)\right)}+\frac{R_{0}}{W} C_{\text {wire }}+R_{\text {wire }} \cdot 2 W C_{0}
$$

$$
2 \sqrt{0.5 R_{\text {wire }} C_{\text {wire }}\left(2 R_{0} C_{0}(1+\gamma)\right)}+\frac{R_{0}}{\sqrt{\frac{R_{0} C_{\text {wire }}}{\partial R}}} C_{\text {wire }}+R_{\text {wire }} \cdot 2 \sqrt{\frac{R_{0} C_{\text {wire }}}{2 R_{\text {wire }} C_{0}}} C_{0}
$$

$$
2 \sqrt{0.5 R_{\text {wire }} C_{\text {wire }}\left(2 R_{0} C_{0}(1+\gamma)\right)}+\sqrt{R_{0} C_{\text {wire }} \cdot 2 R_{\text {wire }} C_{0}}+\sqrt{R_{0} C_{\text {wire }} \cdot 2 R_{\text {wire }} C_{0}}
$$

$$
2 \sqrt{0.5 R_{\text {wire }} C_{\text {wire }}\left(2 R_{0} C_{0}(1+\gamma)\right)}+2 \sqrt{2 R_{0} C_{0} C_{\text {wire }} R_{\text {wire }}}
$$

Delay at Optimum W

- If $\gamma=1$

$$
\begin{gathered}
2 \sqrt{R_{\text {wire }} C_{\text {wire }}\left(R_{0} C_{0}(1+1)\right)}+2 \sqrt{2 R_{0} C_{0} C_{\text {wire }} R_{\text {wire }}} \\
2 \sqrt{2 R_{0} C_{0} C_{\text {wire }} R_{\text {wire }}}+2 \sqrt{2 R_{0} C_{0} C_{\text {wire }} R_{\text {wire }}} \\
4 \sqrt{2 R_{0} C_{0} C_{\text {wire }} R_{\text {wire }}}
\end{gathered}
$$

- Optimal design equalizes all delays!

Delay at Optimum W

- If $\gamma=1$

$$
\begin{gathered}
2 \sqrt{R_{\text {wire }} C_{\text {wire }}\left(R_{0} C_{0}(1+1)\right)}+2 \sqrt{2 R_{0} C_{0} C_{\text {wire }} R_{\text {wire }}} \\
2 \sqrt{2 R_{0} C_{0} C_{\text {wire }} R_{\text {wire }}}+2 \sqrt{2 R_{0} C_{0} C_{\text {wire }} R_{\text {wire }}} \\
4 \sqrt{2 R_{0} C_{0} C_{\text {wire }} R_{\text {wire }}}
\end{gathered}
$$

- Optimal design equalizes all delays!

$8.8 n s \rightarrow 0.27 n s$

Ideas

- Wire delay linear once buffered optimally
- Optimal buffers equalizes delays
- Buffer delay
- Delay on wire between buffers
- Delay of wire driving buffer

Admin

- Friday HW 7 due
- Final (F 12/17)
- 12-2pm in Moore 212
- Cumulative: Lec 1 - 35
- Big Idea slides from each lecture
- Finals 2010-2019 online
- Friday lecture review
- TA review session before exam
- TBD, watch Piazza. Maybe a poll.

