ESE370

Assume:

- $R_u = 60 \text{K}\Omega$ per 1mm length of wire; $C_u = 0.16 \text{pF}$ per 1mm length of wire
- $R_{wire} = L \times R_u; C_{wire} = L \times C_u;$
- $R_0 = 25 \text{K}\Omega; C_0 = 0.01 \text{fF}$
- velocity saturated; $\gamma = C_{diff}/C_{gate} = 1$
- initial, minimum size buffer has $W_p = W_n = 1$
- 1. What is the delay of an unbuffered wire of length L=1mm driven and loaded by a minimum size buffer $(W_p = 1, W_n = 1)$? Draw the equivalent RC network and write a symbolic equation.

- Symbolic Equation:
- 2. What is the delay of a length L = 1mm, when we add N evenly spaced buffers to the wire.

Wire of Length	Delay (ns)	Number in 1mm	Total Delay for 1mm (ns)
1mm		1	
$0.5\mathrm{mm}$		2	
$0.1\mathrm{mm}$		10	
0.01mm		100	
0.001mm		1000	

- 3. What is the delay of a length L, when we add N evenly spaced buffers to the wire.
 - Symbolic Equation:
- 4. How many buffers do we use to minimize delay?
 - Symbolic Equation:
 Number of buffers to minimize delay on 1mm wire:
 Delay at this buffer count:
 Optimum segment length between buffers:

- 5. How should we size the buffers?
 - Symbolic Equation:
 W to minimize delay:
 Delay of 1mm wire at optimal buffer size: