ESE370: Circuit Level Modeling, Design, and Optimization for Digital Systems

Lec 36: December 10, Review

Objective

- At circuit level, how do we implement robust digital systems that are...
- -High-speed -Low-power -Area-efficient

with given technology

3rd generation Intel Core

Learning

- How to model digital logic and reason about behaviors and performances
- How to design circuits and perform simulations for functional verification and performance analysis
- How to **optimize** circuits using various techniques

CMOS Logic

- Complementary metal-oxide semiconductor
- PMOS pullup network implements f
- NMOS pulldown network implements f/

-Why not the other way around?

MOSFET Model

- Zeroth-order model:
 Transistor as switch
- First order model:
 - Transistor as resistive driver (R_{on})
 - Transistor's gate as capacitive load (C_g)
- What do models tell?
 - \rightarrow Reason about logic
 - \rightarrow Reason about RC delay

MOSFET Model

- Spice model of NMOS
- Parameters should look familiar

http://ecee.colorado.edu/~bart/book/book/chapter7/ch7_5.htm

Restoration

- Output not going to rail
- Noise problems

-Consequence? → Voltage seen at the input can be degraded -What can we do?

 \rightarrow Restoration with proper noise margins

Definition: $NM_h = V_{oh} - V_{ih}$

: How much "high" output voltage can drop and still be recognized as "high" $NM_{\rm I}$ = $V_{\rm il}$ - $V_{\rm ol}$

: How much "low" output voltage can rise and still be recognized as "low"

Restoration

- Necessity observed throughout the course
 - Pass-transistor signal degradation (i.e. V_{dd} V_{thn})
 - Ratioed-logic noise margin
 - Inductive noise
 - Crosstalk noise
 - Reflections
- Becomes more important as the circuit complexity increases
 - Want to maintain robust signal everywhere

MOS Transistor Operation

- Operating regions: -Sub-threshold (cutoff), $V_{gs} < V_{th}$ -Resistive (linear), $V_{gs} > V_{th}$ -Saturation (active), $V_{ds} > V_{gs} - V_{th}$
- Strength scales by (W/L)
- Channel as varying resistance
- Short channel effects
- -Velocity saturation
- -Drain-Induced Barrier Lowering (DIBL)
- -Hot electron effect

MOS Transistor Capacitance

- Capacitances at each terminal of the transistor
- Capacitances vary with V_{gs} (operating region)
- Implications...?
- \rightarrow Overshooting

Layout

- Can identify what each part of layout is/does
- Design rules for fabrication
- Multiple metal layers for routing
- Bigger picture?
- Interconnect and parasitics
- Effects on performance

11

Scaling

- $32nm \rightarrow 22nm \rightarrow 14nm \rightarrow 7nm$
 - Final ITSR report 2015
- Observed scaling of:

Area, capacitance, resistance, threshold, current, gate delay, wire delay, and power

- Will Moore's law continue?
- Implications:
 - Material-science view
 - Power density limits
 - Other options for improvement...

τ Model

- $\tau = R_0 C_0$ modeling for delay
- Impact of transistor sizing (W and L) on R and C
- Fan-out, driving stages, and sizing
- i.e. Multiple inverter stages
- Identify worst case delay scenarios for different gates
- Tradeoff between large gates vs small gates (# stages, fanin/fanout)

Penn ESE370: Fall 2021 -- Khanna

 $C = \varepsilon_r \varepsilon_0 \frac{A}{d}$ $R = \frac{\rho L}{A}$

Energy and Power

Static

- Subthreshold leakage, gate-drain leakage

- Capacitive switching
 - Charge & discharge output load
- Short Circuit
 - When both N and P devices are on

Energy and Power

• Why Important...?

Energy and Power Optimization

- Ignoring leakage,
- Energy proportional to V²
- Delay proportional to 1/V \rightarrow E τ Energy & delay tradeoff
- V_{th} effect on
 - Speed
 - Switching energy
 - Leakage energy
- From project, logic family, logic optimization, sizing, ...
 Rich energy optimization space to explore

• $P_{tot} = P_{static} + P_{sc} + P_{dyn}$

•
$$P_{dyn} + P_{sc} = a(\frac{1}{2}C_{load} + C_{sc})V^2f$$

•
$$P_{tot} \approx a(\frac{1}{2}C_{load} + C_{sc})V^2f + VI'_s(W/L)e^{-Vt/(nkT/q)}$$

Ratioed Logic

- Build single pull-up (pull-down) control network
- Compared to CMOS,

Pros:

- Less transistor
- \rightarrow Less area...?
- \rightarrow Less capacitive load...?

Cons:

- Constant power dissipation
- Need careful sizing (noise margin)

Tradeoff between noise margin and area & capacitance

Pass Transistor Logic

- Simple switch-based logic
- Compared to CMOS, Pros:
- Less transistor ...?
- \rightarrow Less area...?
- \rightarrow Less capacitive load...?
- Cons:
 - Needs restoration (buffering)
 - Can be slow
 - Limited voltage lowering for energy reduction
- Pass transistor with restoration stages vs CMOS

Needs to take into account diffusion capacitance, ${}^{Y}C_{g} \rightarrow EImore$ delay

Elmore Delay

- Chain of pass-transistors modeled into RC chain
- \rightarrow Cannot use simple τ model for delay (What if Y = 0?)
- \rightarrow Use refined model for more accurate delay calculation
- Where else do we observe RC chain?

Runit*(N*Cunit)+Runit((N-1)*Cunit +Runit*(N-2)*Cunit+...+Runit*Cunit =(Runit*Cunit)*(N+N-1+N-2+....1) =Runit*Cunit*N²/2

$$Delay = \sum_{path} \left(R_i \times \sum_{i \xrightarrow{path} j} C_j \right)$$

Synchronous Circuits & Clocking

- Reuse logic resources
- \rightarrow Add state elements (latches, registers)
- Clocking discipline
- Setup and hold times
- $\mbox{clk} \rightarrow \mbox{q}$ delay for data output from state element
- Clocking can be used for dynamic logic family
 - Domino logic
- Disable pull-up (pull-down) during evaluation; no static power
 - Needs precharge for disabling next-stage NMOS evaluation
 - Can involve extra clocking energy, precharge energy, complexity

Memory

- Memory bank organized for
 - Economic wire and area usage
 - Maximize storage density
 - Share peripheries
- Main components:
- SRAM Memory cell: cross-coupled inv.
- Write drivers (tristate buffers)
- Decoder (column/row)
- Precharge
- Sense amplifier

Memory

- What did we use to build?
 - CMOS
 - Memory cell cross-coupled inverter
 - Buffers
 - Pass transistor
 - Access transistor
 - Decoder
 - Ratioed Logic
 - NAND/NOR ROM
 - 6T SRAM sizing

And more for energy optimization...

Memory

- Robustness
 - Charge-sharing effect and read-write upsets
 - \rightarrow Need to carefully size cell
 - One solution was to use pre-charge of Vdd/2
 - \rightarrow Prevent voltage swing and read-write upset
- Scaling
 - Deeper (more rows) memory will need strong driver and precharge
 - Wider (more columns) memory will need strong addressing
- Implications
 - Want to use high V_{th} from energy stand-point (sacrifice speed for energy)
 - Routing wires also scale with memory size
 - \rightarrow Need to be concerned about parasitic capacitances, crosstalk, noise...

Inductive Noise

- Sources?
 - Wire (scales with length)
 - Bond & package pins
- Where?
 - Signal paths and power supplies
- Problems?
 - RLC response
 - Oscillation can dominate (HW8)
- Solutions?
 - Make wire short
 - Bypass capacitor (Lab 2)

Crosstalk

- Sources?
 - Wire (scales with size/spacing)
- Where?
 - Cables
 - PCB wires
- Problems?
 - Noise
 - Spurious transition
- Solutions?
 - Orthogonal routing
 - Increase pitch
 - Separate with ground/power shield wires (lab2)

Transmission Lines

- From LC lossless transmission line model
 Signal propagates as wave down transmission line
- Behaviour at the end of the line is determined by termination type (short, open, or specific impedance)
- Where would the termination matching be important?
 - Vias
 - Branches
 - Cable-to-cable
 - Board-to-cable

$$w = \frac{1}{\sqrt{LC}} = \frac{c_0}{\sqrt{\varepsilon_r \mu_r}}$$

$$V_i \left(\frac{R - Z_0}{R + Z_0}\right) = V_r$$

1

$$V_i \left(\frac{R - Z_0}{R + Z_0} + 1\right) = V_t$$

Repeaters in Wiring

- Observed delay problems in RC chain
 - Delay will scale by $L^2(N^2)$
 - Elmore delay
- How do we minimize delay?
 → Buffer the wires

- Parameters to consider for buffering
 - # of buffers
 - Length of segment
 - Size of buffers

Repeaters in Wiring

Insights

- Length of optimal segment is a function of technology (not a function of length of wire)

- Same applies to the buffer sizing
- Delay scales linearly in length with proper buffering
- Food for thought
 - Is buffering energy-efficient?

$$L_{seg}^{*} = \frac{L}{N} = \sqrt{2\left(\frac{R_{buf} \times \left(C_{self} + C_{load}\right)}{R_{u} \times C_{u}}\right)}$$

$$W = \sqrt{\frac{R_0 \times C_{wire}}{R_{wire} \times 2C_0}}$$

Admin

- Felicity review session TBD, See Piazza
- Final Exam Friday in Canvas, 12/17
- 12-2pm in Moore 212