Please work before lecture starts.

Hint: When inputs are equivalent, you can exploit symmetry to use the following simplified circuit for reasoning: (Convince yourself these are equivalent.)

What is the digital output assuming ideal NAND gates and all inputs are logical 1 ?	
What is the output assuming all inputs are 1.0 and each NAND gate computes the real-valued function NAND $(\mathrm{A}$, $\mathrm{B})=(1.0-(A \times B))$ where A, B are the real-valued inputs to the NAND2 gate and '-' and ' \times ' are the real-valued math-	
ematical operators. Use table below for intermediary out-	
puts.	
What is the output assuming all inputs are 0.95 and each nand gate computes NAND $(\mathrm{A}, \mathrm{B})=(1.0-\mathrm{A} \times \mathrm{B})$ [same as- sumptions as above and table below].	

Hint: When inputs are at 0.95 , output of first NAND2 gate is: $1.0-(0.95)^{2} \approx 0.1$.

	Value after i-th NAND2 gate					
input	1	2	3	4	5	6
1.0						
0.95	0.1					

Consider a wire $1 \mu \mathrm{~m}$ wide and $1 \mu \mathrm{~m}$ tall with a resistivity $\rho=10^{-7} \mathrm{Ohm}-\mathrm{m}$.

What is the resistance of the $100 \mu \mathrm{~m}$ long wire?	
a 1 mm long wire?	
a 1 cm long wire?	
How large is an Integrated Circuit chip (die) (e.g. your desktop or laptop processor)?	

Regeneration/Restoration/Static Discipline:

As long as input(s) respect: $V_{i n}<V_{I L}$ or $V_{i n}>V_{I H}$, output, $V_{\text {out }}$, will have: $V_{\text {out }}<V_{O L}$ or $V_{\text {out }}>V_{O H}$

