ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems

Lec 5: September 15, 2021 Delay and RC Response

Gate Delay is RC Charging

Strategy:

- Use zero-order model to understand switch state
- Break into output/input stages
- For each stage
 - Understand R_{drive}
 - Understand C_{load}

- **RC** Charging
 - RC Step Response Curve
- What is the C?
 - Capacitive load on logic gate output node
- □ What is the R?
 - Equivalent output resistance on the current path driving the output node
- Approximating and Measuring Delay
 - Tau estimate!

What is final V_{measure} ? What is time constant, τ ?

Governing Equations? (KCL)

□ KCL @ V_{measure}

- Kirchoff's Current Law
 - Sum of all currents into a node = 0
 - Current entering a node = current exiting a node
- $I_{\rm R} = I_C$

Governing Equations? (KCL)

Governing Equations? (KCL)

$$V_{measure} = V_{in} \left(1 - \left(e^{-t/RC} \right) \right)$$

Shape of Curve (preclass 1c)

t (in ps)	e ^{-t/RC}	$1-e^{-t/RC}$
0		
0.1		
1		
2		
2.3		

$$V_{in}=1 \qquad V_{measure} = V_{in} \left(1 - \left(e^{-t/RC} \right) \right)$$

Shape of Curve (preclass 1d)

t (in ps)	e ^{-t/RC}	$1-e^{-t/RC}$
0		
0.1		
1		
2		
2.3		

$$V_{in}=1 \qquad V_{measure} = V_{in} \left(1 - \left(e^{-t/RC} \right) \right)$$

At what time is V_{measure} 50% of its value?

Propagation Delay Definitions

Voltage Waveform at Output/Input Node

Voltage Waveform at Output/Input Node

What is C?

• Wire

- Fanout -- Total gate load
 - Logical Gate
 - MOSFET gate

Number of things to which a gate output connects

• Output routed to many gate inputs

Fanout in Circuit (preclass 2)

- Maximum fanout?
- □ Second?
- □ Min?

What is R?

- □ Wire resistance
 - From supply (Vdd or Gnd) to transistor source
 - From transistor output to gate it is driving
- \Box Transistor equivalent resistance (R_{on})

What resistances might transistors contribute?

- What resistances might transistors contribute?
 - How many cases?
 - Assume $R_{on} = R_{on,p} = R_{on,n}$

$$R_{drive} = R_{tr,net} + \sum_{i \in wires} R_{w_i}$$

 $R_{tr,net}$ = transistor network resistance = parallel and series combination of R_{tr} Voltage Waveform at Output/Input Node

Measuring Delay

Measuring Gate Propagation Delay

Next stage starts to switch before first finishes
Measure from 50% of input swing to 50% of output swing

Penn ESE370 Fall2021 – Khanna

Characterizing Gate/Technology

- Delay measure of a logic gate will be
 - Function of load on logic gate
 - Function of input signal rise time
 - Which, in turn, may be a function of input loading from the driving logic gate

If we didn't know the input rise time, we wouldn't know what a 13ps delay meant

Characterizing Gate/Technology

Delay measure will be

- Function of load on gate
- Function of input signal rise time
 - Which, in turn, may be a function of input loading
- □ Want to understand typical delay times
 - Allows us to compare designs with a (somewhat) normalized delay metric

Standard Measurement for Characterization

- Drive with a gate
 - Not an ideal source
 - Input rise time typically would see in circuit
- Measure loaded gate
 - Typical loading FO4

Not realistic measurement

HW2 Measurement Setup

Measurement for Characterization

Drive with a gate

- Not an ideal source (how does delay change if drive is ideal?)
- Input rise time typically would see in circuit
- Measure loaded gate
 - Typical loading FO4

42

*** spice deck for cell nand2trans{sch} from library test

Measurement for Characterization

Drive with a gate

- Not an ideal source
- Input rise time typically would see in circuit
- Measure loaded gate
 - Typical loading FO4 (how does delay change if gate is unloaded?)

*** spice deck for cell nand2trans{sch} from library test

 $C_{\text{load},1} = C_{\text{load},2} = C_{\text{load},3}$ and INV1 = INV2 = INV3 = SYM INV

□ HW 2 due 9/20

- If you haven't started, start now!
- Office hours on every weekday
- Setup Spice Work Flow
 - access to electric, setup for spice, run ngspice
 - See tool guides on website
 - https://www.seas.upenn.edu/~ese370/#tools
 - read spice style guide on webpage:
 - https://www.seas.upenn.edu/~ese370/fall2021/handouts/s pice_style_guide.pdf