
ESE370: Circuit-Level Modeling, Design, 
and Optimization for Digital Systems

Lec 8:  September 22, 2021
MOS Transistor Operating Regions

Part 2
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Today

! Operating Regions (continued)
" Resistive
" Saturation
" Subthreshold
" Velocity Saturation

! Short Channel Effects
" Vth

" Drain Induced Barrier Lowering
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Last Time…

Above Threshold
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Linear Region

! VGS>Vth and VDS small
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Saturation

! In saturation, VDS-effective=Vx= VGS-VT

! Becomes:
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MOSFET – IV Characteristics

VDS

IDS
VGS -Vth

VDS ≥VGS -VTH

VDS <VGS -VTH
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Subthreshold
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Below Threshold

! Transition from insulating to conducting is non-
linear, but not abrupt

! Current does flow
" But exponentially dependent on VGS
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Below Threshold

! Transition from insulating to conducting is non-
linear, but not abrupt

! Current does flow
" But exponentially dependent on VGS

9Penn ESE370 Fall 2021 – Khanna



Parasitic NPN BJT

! We have an NPN sandwich, mobile minority carriers in the P 
region

! This is a BJT! 
" Except that the base potential is here controlled through a capacitive 

divider, and not directly an electrode 
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Subthreshold

If   VGS <Vth,

IDS = IS
W
L
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! Current is from the parasitic NPN BJT transistor 
when gate is below threshold and there is no 
conducting channel
" n is the capacitive divider between parasitic capacitances
" Typically 1 < n < 1.5

n =
Cjs +Cox

Cox



Steady State (Preclass 1)

! What current flows in steady state?
! What causes (and determines)

the magnitude of current flow?
! Which device?
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Leakage

! Call this steady-state current flow leakage
" Ids,leakage
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Subthreshold Slope Factor

! Exponent in VGS determines how steep the turnon
is

" Units: V/decade
" Every S Volts, IDS is scaled by factor of 10
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IDS vs. VGS

(Logscale)
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Subthreshold Slope Factor

! Exponent in VGS determines how steep the turnon
is

" Units: V/dec
" Every S Volts, IDS is scaled by factor of 10

! n – depends on parasitic capacitance divider
" n=1 # S=60mV at Room Temp. (ideal)
" n=1.5 # S=90mV 
" Single gate structure showing S=90-110mV
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n =
Cjs +Cox

Cox



Subthreshold Slope Factor (Preclass 2)

! If S=100mV and Vth=300mV,
what is Ids(Vgs=300mV)/Ids(Vgs=0V) ?

! What if S=60mV?
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Velocity Saturation



Carrier Velocity 

! Model assumes carrier velocity increases with field
" Increases with voltage proportionally to mobility 
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Carrier Velocity 

! Model assumes carrier velocity increases with field
" Increases with voltage proportionally to mobility 

20

(3x108 m/sec)
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Preclass 3

! (a) What is the electrical field in the channel?

! Velocity: 

! Electron mobility: 
! (b) What is the electron velocity?

Leff = 25nm,VDS =1V

Uniform Field = VDS
Leff

v = F ⋅µn

µn = 500cm 2 / (V ⋅ s)
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Moving Charge

! I increases 
linearly in V

! What’s I?

I = 1
R
!
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Moving Charge

! I increases 
linearly in V

! What’s I?
" DQ/Dt
" Speed at which charge 

moves

I = 1
R
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Moving Charge

! I increases 
linearly in V

! What’s I?
" DQ/Dt
" Speed at which charge 

moves

! Velocity increases 
linearly in V

! What’s a moving 
electron?

Field = VDS
Leff
,v = µn ⋅F
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Carrier Velocity 

25

! Velocity –
" increases for increasing field with slope of  mobility
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Carrier Velocity

26

! Velocity –
" increases for increasing field with slope of  mobility
" saturates for increasing field

" More likely to hit the critical field in short channel
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Short Channel

! Model assumes carrier velocity increases with field
" Increases with voltage proportionally to mobility

! There is a limit to how fast carriers can move
" Limited by scattering effects

" ~ 105m/s 

! Encounter velocity saturation when channel short
" Modern processes, L is short enough to reach this region 

of operation
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Velocity Saturation (Preclass 3)

! (c) At what voltage do we hit the speed limit 
105m/s? 
" Leff=25nm, Vds=1V
" VDSAT = voltage at which velocity (current) saturates
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Velocity Saturation

! Our current model equation:

! Once velocity saturates:
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Velocity Saturation

! Our current model equation:

! Once velocity saturates:

IDS = µnCOX
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Velocity Saturation

! Our current model equation:

! Once velocity saturates:

IDS = µnCOX
W
L

⎛

⎝
⎜

⎞

⎠
⎟ VGS −Vth( )VDS −

VDS
2

2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

VDS =VDSAT ⇒ IDS = µnCOX
W
L

⎛

⎝
⎜

⎞

⎠
⎟ VGS −Vth( )VDSAT −

VDSAT
2

2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

IDS = µn
VDSAT
L

⎛

⎝
⎜

⎞

⎠
⎟COXW VGS −Vth( )−VDSAT2

⎡

⎣
⎢

⎤

⎦
⎥

IDS ≈ vsatCOXW VGS −Vth( )−VDSAT2
⎡

⎣
⎢

⎤

⎦
⎥

31Penn ESE370 Fall 2021 – Khanna



Velocity Saturation

! Our current model equation:

! Once velocity saturates:

IDS = µnCOX
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Velocity Saturation

! Long Channel
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Velocity Saturation

! Long Channel ! Short Channel
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Velocity Saturation
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Vds

Id



Velocity Saturation

! Once velocity saturates we can still increase current 
with parallelism
" Effectively make a wider device
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Threshold
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Short Channel Effects – VT Reduction

38
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Short Channel Effects – VT Reduction
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Short Channel Effects - DIBL
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! Drain Induced Barrier Lowering
" VT Reduction with Drain Bias 



Short Channel Effects - DIBL
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! Drain Induced Barrier Lowering
" VT Reduction with Drain Bias 

VT

VDS



Threshold Reduction Impact
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In a Gate?

! What does it impact most?
" Which device, has large Vds?
" How does this effect operation?

" Speed of switching?
" Leakage?
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Big Idea

! 3+ Regions of operation for MOSFET
" Subthreshold
" Linear
" Saturation

" Pinch Off

" Velocity Saturation, DIBL
" Short channel
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Admin

! HW3 due Monday
" Takes time!  Learning curve for how to debug
" Don’t forget the demo/video of SPICE workflow

! Midterm 1 Review session 
! Midterm 1 Friday 10/1 (next week)

" 7-9pm in Towne 309
" No Lecture, virtual office hours 

" (use my OH link on Piazza)

" Midterms from 2010-2019
" All online with and without answers
" Suggest start without answers

" Conflicts must let me know ASAP
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