University of Pennsylvania Department of Electrical and System Engineering Circuit-Level Modeling, Design, and Optimization for Digital Systems

ESE370, Fall 2021 Midterm 1 Friday, October 1	ESE370, Fall 2021	Midterm 1	Friday, October 1
---	-------------------	-----------	-------------------

- 4 problems with weights indicated.
- Parts within a problem will not be weighted equally.
- Calculators allowed.
- Closed book = No text or notes allowed.

Name: Answers

Grade:

Q1	
Q2	
Q3	
Q4	
Total	Mean: 92.4, Stdev: 7.2

1. (25 points) Identify if the following circuits are CMOS, why or why not, and their functions. [Show your work for partial credit consideration.]

CMOS? (circle one)	Yes No
(if CMOS) Function (Out)	
(if not CMOS) Why not?	Short from Vdd to
	Gnd for $A=B=C=1$

CMOS? (circle one)	Yes No
(if CMOS) Function (Out)	$\overline{Out} = A \cdot B \cdot C + \overline{A} \cdot \overline{B} \cdot \overline{C}$
(if not CMOS) Why not?	

CMOS? (circle one)	Yes	No		
(if CMOS) Function (Out)				
(if not CMOS) Why not?	Short Gnd B=C=	from when =0	Vdd A=	to =1,

2. (25 points) Consider the following circuit:

Assume:

- all transistors are same size.
- all on transistors have resitance R_{on} .
- all transistors have total gate capacitance C_g .

[Show calculation for partial credit consideration.]

3. (25 points) Consider the following circuit and its voltage transfer characteristic as well as the voltage at node X. Assume $V_{dd} = 800mV$ and $V_{thn} = -V_{thp} = 200mV$.

For the regions A-E labeled on the transfer function, identify the region of operation of the nMOS and both pMOS devices. Fill out the table below.

	N1	P1	P2
Α	Subthreshold	Linear	Saturation*
В	Subthreshold	Saturation	Saturation
C	Saturation	Saturation	Saturation
D	Linear	Saturation	Saturation*
E	Linear	Subthreshold	Saturation*

Subthreshold and Saturation were both accepted.

For reference on the next page are the transistor current models and additional work space if needed:

NMOS:

V_{GS}	V_{DS}	Mode	I_{DS}
$\geq V_{thn}$	$< V_{GS} - V_{thn}$	Linear	$\mu_n C_{ox} \frac{W}{L} \cdot \left((V_{GS} - V_{thn}) \cdot V_{DS} - \frac{V_{DS}^2}{2} \right)$
	$\geq V_{GS} - V_{thn}$	Saturation	$\frac{1}{2}\mu_n C_{ox} \frac{W}{L} \cdot \left(V_{GS} - V_{thn}\right)^2$
$< V_{th}$		Subthreshold	0

PMOS:

	V_{GS}	V_{DS}	Mode	I _{DS}
	$\leq V_{thp}$	$> V_{GS} - V_{thp}$	Linear	$\mu_p C_{ox} \frac{W}{L} \cdot \left((V_{GS} - V_{thp}) \cdot V_{DS} - \frac{V_{DS}^2}{2} \right)$
		$\leq V_{GS} - V_{thp}$	Saturation	$\frac{1}{2}\mu_n C_{ox} \frac{W}{L} \cdot (V_{GS} - V_{thp})^2$
ĺ	$> V_{th}$		Subthreshold	0

- 4. (25 points) For this problem we consider a new technology that is not necessarily MOS. You can assume $V_{dd} = 1V$ We are told there are two "gates" available to us:
 - *P*-gate: 1-input gate where:

$$V_{out} = \begin{cases} 1 - 0.5V_{in} & V_{in} < 0.3\\ 1.6 - 2.5V_{in} & 0.3 \le V_{in} < 0.6\\ 0.25 - 0.25V_{in} & 0.6 \le V_{in} \end{cases}$$
(1)

- Q-gate: 2-input gate where: $V_{out} = |V_A V_B|$
- (a) What logical function does the restoring P-gate perform? Identify the noise margins that will provide restoration for this gate.

Function: Inverter

V _{OH}	850mV
V_{IH}	$600 \mathrm{mV}$
V_{IL}	300mV
V _{OL}	$ 100\mathrm{mV} $
NM_L	$200 \mathrm{mV}$
NM_H	$250 \mathrm{mV}$

(b) What logical function does the non-restoring Q-gate perform and is it restoring? Draw a combination of P and Q gates that will serve as a restoring gate that performs the same logic function and identify the noise margins that will provide restoration for this new gate.

Function: XOR

V _{OH}	$750 \mathrm{mV}$
V_{IH}	$600 \mathrm{mV}$
V _{IL}	$300 \mathrm{mV}$
V _{OL}	$150 \mathrm{mV}$
NM_L	$150 \mathrm{mV}$
NM _H	$150 \mathrm{mV}$

 V_{IL} and V_{IH} are the inflection points of the P-gates. The outputs of each P-gate will be > 0.85 or < 0.1. The worst-case low output will be when the P-gate outputs are 1 and 0.85, thus $V_{OL} = 0.15$; the worst-case high output will be when the P-gate outputs are 0.1 and 0.85, $V_{OH} = 0.75$