University of Pennsylvania Department of Electrical and System Engineering Circuit-Level Modeling, Design, and Optimization for Digital Systems

- 4 problems with weights indicated.
- Parts within a problem will not be weighted equally.
- Calculators allowed.
- Closed book $=$ No text or notes allowed.

Name: Answers

Grade:

Q1	
Q2	
Q3	
Q4	
Total	Mean: 92.4, Stdev: 7.2

1. (25 points) Identify if the following circuits are CMOS, why or why not, and their functions. [Show your work for partial credit consideration.]

(a)

CMOS? (circle one)	Yes No
(if CMOS) Function (Out)	
(if not CMOS) Why not?	Short from Vdd to Gnd for $\mathrm{A}=\mathrm{B}=\mathrm{C}=1$

CMOS? (circle one)	Yes No
(if CMOS) Function (Out)	$\overline{O u t}=A \cdot B \cdot C+\bar{A} \cdot \bar{B} \cdot \bar{C}$
(if not CMOS) Why not?	

CMOS? (circle one)	Yes No
(if CMOS) Function (Out)	
(if not CMOS) Why not?	Short from Vdd to Gnd when $\mathrm{A}=1$, $\mathrm{B}=\mathrm{C}=0$

2. (25 points) Consider the following circuit:

Assume:

- all transistors are same size.
- all on transistors have resitance $R_{o n}$.
- all transistors have total gate capacitance C_{g}.
(a) Identify the output function.

(b) Lowest resistance driving output?

Case: $\mathrm{A}=\mathrm{B}=\mathrm{C}=\mathrm{D}=0$
Resistance: $\frac{10}{11} R_{o n}$
(c) Highest resistance driving output?
Case: $A=B=0, C=D=1$
Resistance: $2 R_{\text {on }}$
(d) Lowest capacitance of an input?

Which: C
Capacitance: C_{g}
(e) Highest capacitance of an input?

Which: B, D
Capacitance: $3 C_{g}$
(f) Worst-case 10-90 rise time for one of these gates driving a single input of another of these gates?
Case: with $\mathrm{B}=0, \mathrm{C}=\mathrm{D}=1, \mathrm{~A}: 1 \rightarrow 0$
Rise Time Expression: $2.2 * 2 R_{\text {on }} * 3 C_{g}=13.2 R_{\text {on }} C_{g}$
[Show calculation for partial credit consideration.]
3. (25 points) Consider the following circuit and its voltage transfer characteristic as well as the voltage at node X. Assume $V_{d d}=800 \mathrm{mV}$ and $V_{t h n}=-V_{t h p}=200 \mathrm{mV}$.

For the regions A-E labeled on the transfer function, identify the region of operation of the nMOS and both pMOS devices. Fill out the table below.

	N1	P1	P2
A	Subthreshold	Linear	Saturation*
B	Subthreshold	Saturation	Saturation
C	Saturation	Saturation	Saturation
D	Linear	Saturation	Saturation*
E	Linear	Subthreshold	Saturation*

Subthreshold and Saturation were both accepted.
For reference on the next page are the transistor current models and additional work space if needed:

NMOS:

$V_{G S}$	$V_{D S}$	Mode	$I_{D S}$
$\geq V_{\text {thn }}$	$<V_{G S}-V_{\text {thn }}$	Linear	$\mu_{n} C_{o x} \frac{W}{L} \cdot\left(\left(V_{G S}-V_{t h n}\right) \cdot V_{D S}-\frac{V_{D S}^{2}}{2}\right)$
	$\geq V_{G S}-V_{t h n}$	Saturation	$\frac{1}{2} \mu_{n} C_{o x} \frac{W}{L} \cdot\left(V_{G S}-V_{t h n}\right)^{2}$
$<V_{t h}$		Subthreshold	0

PMOS:

$V_{G S}$	$V_{D S}$	Mode	$I_{D S}$
$\leq V_{t h p}$	$>V_{G S}-V_{t h p}$	Linear	$\mu_{p} C_{o x} \frac{W}{L} \cdot\left(\left(V_{G S}-V_{t h p}\right) \cdot V_{D S}-\frac{V_{D S}^{2}}{2}\right)$
	$\leq V_{G S}-V_{t h p}$	Saturation	$\frac{1}{2} \mu_{n} C_{o x} \frac{W}{L} \cdot\left(V_{G S}-V_{t h p}\right)^{2}$
$>V_{t h}$		Subthreshold	0

4. (25 points) For this problem we consider a new technology that is not necessarily MOS. You can assume $V_{d d}=1 V$ We are told there are two "gates" available to us:

- P-gate: 1-input gate where:

$$
V_{\text {out }}=\left\{\begin{array}{cc}
1-0.5 V_{\text {in }} & V_{\text {in }}<0.3 \tag{1}\\
1.6-2.5 V_{\text {in }} & 0.3 \leq V_{\text {in }}<0.6 \\
0.25-0.25 V_{\text {in }} & 0.6 \leq V_{\text {in }}
\end{array}\right.
$$

- Q-gate: 2-input gate where: $V_{o u t}=\left|V_{A}-V_{B}\right|$
(a) What logical function does the restoring P-gate perform? Identify the noise margins that will provide restoration for this gate.
Function: Inverter

$V_{O H}$	850 mV
$V_{I H}$	600 mV
$V_{I L}$	300 mV
$V_{O L}$	100 mV
$N M_{L}$	200 mV
$N M_{H}$	250 mV

(b) What logical function does the non-restoring Q-gate perform and is it restoring? Draw a combination of P and Q gates that will serve as a restoring gate that performs the same logic function and identify the noise margins that will provide restoration for this new gate.
Function: XOR

$V_{O H}$	750 mV
$V_{I H}$	600 mV
$V_{I L}$	300 mV
$V_{O L}$	150 mV
$N M_{L}$	150 mV
$N M_{H}$	150 mV

$V_{I L}$ and $V_{I H}$ are the inflection points of the P-gates. The outputs of each P-gate will be >0.85 or <0.1. The worst-case low output will be when the P-gate outputs are 1 and 0.85 , thus $V_{O L}=0.15$; the worst-case high output will be when the P-gate outputs are 0.1 and $0.85, V_{O H}=0.75$

