Consider a 16b (and 17b) ripple-carry adder built out of 1-bit adder slices. The delay from the three inputs of the 1-bit adder to the two outputs is $T_{b i t}$.

1. What is the worst-case delay through the 16 b adder? \square
2. After a change in an input, what is the shortest amount of time before an output bit changes? \square
3. Consider the somewhat unusual 4 -input adder tree shown. Assume negligible ($\ll T_{b i t}$) delay in bitrev. (bitrev: Out $[\mathrm{i}]=\operatorname{In}[17-\mathrm{i}]$)

What happens if we provide new set of inputs to this circuit every $20 T_{b i t}$?
4. How might we implement a latch that behaves as follows:

$$
\begin{aligned}
& \text { if }(\phi==1) \\
& \quad \text { Out }=/ \text { In } \\
& \text { else } \\
& \quad \text { Out }=\text { Out }
\end{aligned}
$$

(a) Using combinational logic (at gate level. Hint: Think about a mux...)?
(b) Using Pass transistors?

	Min	Max
OR/AND	3 ns	5 ns
NOR/NAND	2 ns	4 ns
NOT	1 ns	2 ns
XOR	3 ns	9 ns

Latch:		Min	Max
	Clock to Q	2 ns	3 ns
	Setup time	7 ns	
	Hold time	6 ns	

5. Timing Constraints:

$$
\begin{array}{r}
T \geq t_{c-q}+t_{\text {plogic }}+t_{s u} \\
t_{\text {cdregister }}+t_{\text {cdlogic }} \geq t_{\text {hold }} \tag{2}
\end{array}
$$

(a) What is the minimum clock period, T , that ensures correct operation?
(b) Add inverter pairs to the design above such that there are no hold time variations.

