

V_{GS}	V_{DS}	Mode	I_{DS}
$> V_{th}$	$< V_{GS} - V_{th}$	Resistive	$\mu_n C_{OX}\left(\frac{W}{L}\right) \left(\left(V_{GS} - V_{th}\right) V_{DS} - \frac{\left(V_{DS}\right)^2}{2} \right)$
	$> V_{GS} - V_{th}$	Saturation	$\frac{\mu_n C_{OX}}{2} \left(\frac{W}{L}\right) \left(V_{GS} - V_{th}\right)^2$
	$\& < V_{DSAT}$		
	$> V_{DSAT}$	Velocity Saturation	$ u_{sat}C_{OX}W\left(V_{GS}-V_{th}-rac{V_{DSAT}}{2} ight)$
$< V_{th}$		Subthreshold	$I_S\left(\frac{W}{L}\right)e^{\frac{V_{GS}-V_{th}}{nkT/q}}$

1. Consider an NMOS transistor with $L_{eff}=25$ nm and $V_{ds}=1$ V

(a) What is the electrical field (F) in V/ μ m in the channel between source and drain?

(F = V/L)

(b) With an electron mobility of $\mu_n = 500 \text{ cm}^2 / (V \cdot s)$, what is the velocity of the electron in this field? (in m/s)?

(velocity
$$v = \mu \times F$$
)

(c) At what V_{ds} voltage does the velocity reach 10⁵ m/s ?

2. How many capacitance values might we need to represent a 4-terminal transistor? (fourth terminal is body)

Hint: How many terminal pairs are there?

Terminal Pair	Capacitance

Use in class for notes to summarize cases and capacitances.

3. Assuming a step input from 0 to 1V by the pulse generator on the left, what does the voltage on *Vout* as a function of time look like?

Hints: What is the initial voltage? What is the steady-state voltage as $t \to \infty$?