Let:

- R_{0} - equivalent resistance of minimum size $(W=L=1)$ NMOS transistor
- I_{0} - equivalent current of minimum size $(W=L=1)$ NMOS transistor
- C_{0} - gate capacitance of minimum size transistor
- $\tau=R_{0} C_{0}$ - technology-specific delay unit (maybe more accurate today $\tau=C_{0} / I_{0}$)

1. What are $I_{d s}, \mathrm{R}$, and C in terms of I_{0}, R_{0}, and C_{0} for a transistor with width W :

$R_{\text {drive }}$	
$I_{\text {drive }}$	
$C_{\text {gate }}$	

2. How size for equal rise/fall times assuming $\mu_{n}=500 \mathrm{~cm}^{2} /(V \cdot s)$ and $\mu_{p}=200 \mathrm{~cm}^{2} /(V \cdot s)$, velocity saturated, and $\left|V_{T_{p}}\right|=\left|V_{T_{n}}\right|$ and targeting $R_{\text {drive }}=\frac{R_{0}}{2}$.

3. What is the delay in τ units?

4. How should we size the transistors in middle stage to minimize delay?

	W_{p}	W_{n}	Delay in τ	

For following, assume:
(a) Extreme velocity saturation where $R_{p 0}=R_{n 0}$ (i.e. $I_{d s}$ at rails is same for equally sized N and P devices - simplifying assumption we made for examples from last class)
(b) $R_{p 0}=2 R_{n 0}$ (i.e. $I_{d s}$ PMOS at rails is half $I_{d s}$ of NMOS)
5. How can you size for equal, worst-case rise/fall times assuming targeting $R_{\text {drive }}=\frac{R_{0}}{2}$ for the two cases above? C_{a} is the capacitance of the A input.

	$R_{p 0}=R_{n 0}$			$R_{p 0}=2 R_{n 0}$		
	W_{p}	W_{n}	C_{a}	W_{p}	W_{n}	C_{a}
\equiv	2	2	$4 C_{0}$	4	2	$6 C_{0}$
$\square_{\mathrm{B}}^{\mathrm{A}} \cdot \square$						

6. For a k-input NAND gate, sized for equal, worst-case rise/fall times and targeting $R_{\text {drive }}=\frac{R_{0}}{2}$:

$$
R_{p 0}=R_{n 0} \quad R_{p 0}=2 R_{n 0}
$$

What is $C_{i n}$ as a function of k ?
7. Assuming sized for $\frac{R_{0}}{2}$ drive as above, and input also driven by $R_{d r i v e}=\frac{R_{0}}{2}$, compare the delay of the following three nand32 implementations for the $R_{p 0}=R_{n 0}$ case. Include the delay of driving the input and assume each implementation has an output load of $4 C_{0}$.

