Let:

- R_0 equivalent resistance of minimum size (W = L = 1) NMOS transistor
- I_0 equivalent current of minimum size (W = L = 1) NMOS transistor
- C_0 gate capacitance of minimum size transistor
- $\tau = R_0 C_0$ technology-specific delay unit (maybe more accurate today $\tau = C_0/I_0$)
- 1. What are I_{ds} , R, and C in terms of I_0 , R_0 , and C_0 for a transistor with width W:

2. How size for equal rise/fall times assuming $\mu_n = 500 \text{ cm}^2/(V \cdot s)$ and $\mu_p = 200 \text{ cm}^2/(V \cdot s)$, velocity saturated, and $|V_{T_p}| = |V_{T_n}|$ and targeting $R_{drive} = \frac{R_0}{2}$.

3. What is the delay in τ units?

4. How should we size the transistors in middle stage to minimize delay?

For following, assume:

- (a) Extreme velocity saturation where $R_{p0} = R_{n0}$ (i.e. I_{ds} at rails is same for equally sized N and P devices—simplifying assumption we made for examples from last class)
- (b) $R_{p0} = 2R_{n0}$ (i.e. I_{ds} PMOS at rails is half I_{ds} of NMOS)

			$\begin{array}{c c} R_{p0} = 2R_{n0} \\ W_p \mid W_n \mid C_a \end{array}$		
W_p	W_n	C_a	W_p	$ W_n $	C_a
2	2	$4C_0$	4	2	$6C_{0}$

5. How can you size for equal, worst-case rise/fall times assuming targeting $R_{drive} = \frac{R_0}{2}$ for the two cases above? C_a is the capacitance of the A input.

6. For a k-input NAND gate, sized for equal, worst-case rise/fall times and targeting $R_{drive} = \frac{R_0}{2}$:

$$R_{p0} = R_{n0} \quad R_{p0} = 2R_{n0}$$
What is C_{in} as a function of k ?

7. Assuming sized for $\frac{R_0}{2}$ drive as above, and input also driven by $R_{drive} = \frac{R_0}{2}$, compare the delay of the following three nand32 implementations for the $R_{p0} = R_{n0}$ case. Include the delay of driving the input and assume each implementation has an output load of $4C_0$.

