University of Pennsylvania

 Department of Electrical and System Engineering Circuit-Level Modeling, Design, and Optimization for Digital SystemsESE3700, Spring 2024 HW4: Delay, MOS Transistor Wednesday, February 21

Due: Wednesday, February 28, 11:59Pm
Unless otherwise noted, assume:

- 22 nm PTM Spice models that you used on HW2: /home1/e/ese3700/ptm/22nm_HP.pm
- $V_{d d}=0.8 \mathrm{~V}, V_{t h n}=300 \mathrm{mV}, V_{t h p}=-300 \mathrm{mV}, C_{O X}=35 \frac{f F}{\mu m^{2}}, L_{d r a w n}=22 n m, L_{e f f}=$ $17 \mathrm{~nm}, W=44 n m, n=1.5, \nu_{S A T}=10^{5} \frac{\mathrm{~m}}{\mathrm{~s}}, \lambda=0, \mu_{n}=540 \frac{\mathrm{~cm}^{2}}{V \cdot \mathrm{~s}}, \mu_{p}=200 \frac{\mathrm{~cm}^{2}}{V \cdot \mathrm{~s}}, \mathrm{~T}=27 \mathrm{C}$ (300K)
- For analytic device modeling, use the follow NMOS IV Model Equations
- Resistive:

$$
\begin{equation*}
I_{D}=\mu_{n} C_{O X}\left(\frac{W}{L}\right)\left(\left(V_{G S}-V_{t h}\right) V_{D S}-\frac{\left(V_{D S}\right)^{2}}{2}\right) \tag{1}
\end{equation*}
$$

- Saturated (Pinch Off):

$$
\begin{equation*}
I_{D}=\frac{1}{2} \mu_{n} C_{O X}\left(\frac{W}{L}\right)\left(V_{G S}-V_{t h}\right)^{2} \tag{2}
\end{equation*}
$$

- Velocity Saturated:

$$
\begin{equation*}
I_{D}=\nu_{s a t} C_{O X} W\left(V_{G S}-V_{t h}-\frac{V_{D S A T}}{2}\right) \tag{3}
\end{equation*}
$$

- Subthreshold:

$$
\begin{equation*}
I_{D}=I_{S}\left(\frac{W}{L}\right) e^{\frac{V_{G S}-V_{t h}}{n k T T q}} \tag{4}
\end{equation*}
$$

with $I_{S}=1 \mu A$
NOTE: The parameters are rough approximations and will not match SPICE perfectly.

1. Using a first-order model and assuming (a) each transistors has an on resistance $R_{o n}$ and (b) each gate has a gate capacitance $C_{\text {gate }}$, what is the worst-case rise and fall time of the signal marked?

For a CMOS circuit, we generally want $I_{o n} / I_{o f f}$ large in order to: (a) achieve output voltages close to the rail, (b) switch quickly, and (c) leak little. Questions 3-5 provide some setup then culminates in a small design problem to select voltage to achieve a target, large $I_{o n} / I_{o f f}$ even in the face of variation.
2. Consider an inverter with $V_{i n}=V_{d d}$ after the output has settled to steady state. Using equations:
(a) Identify the region of operation for the two transistors.
(b) Identify the current through the transistors.
(c) Identify $V_{o l}$. (We specifically want to know how far it is from 0; so, do not approximate it as zero as we would typically, but try to identify the small, nonzero value.)
3. At room temperature what is $I_{o n} / I_{o f f}=I_{d s}\left(V_{g s}=V_{h}\right) / I_{d s}\left(V_{g s}=V_{l}\right)$ for an NMOS transistor used in an inverter with $W_{p}=W_{n}$; assume $V_{d s}=V_{d d}$ for the NMOS in both the ideal case (a) and worst case (b), so this is just after the input switches from $V_{g s}=V_{l}$ to $V_{g s}=V_{h}$.
(a) Ideal: $V_{h}=V_{d d}, V_{l}=0 \mathrm{~V}$
(b) With 100 mV noise margins: $V_{h}=V_{d d}-100 \mathrm{mV}, V_{l}=100 \mathrm{mV}$
4. What is the impact of increasing $V_{t h}$ on the following: (we want a description with words and equations.)
(a) Speed of charging?
(b) $I_{o n} / I_{o f f}$ with 100 mV noise margins (case b above).
5. Consider the simple CMOS inverter operated at $V_{d d}=500 \mathrm{mV}$.
(a) What makes this case different from the $V_{d d}=0.8 \mathrm{~V}$ case?
(b) Identify $V_{o h}, V_{i h}, V_{i l}, V_{o l}$, and the high and low noise margins that provide proper restoration. Hint: Think about the extreme ends of the VTC.
(c) What does this tell you about your freedom to select $V_{d d}$ and still achieve proper operation?
6. Design problem: Use equations to select $V_{d d}$, $V_{t h}$ to achieve $I_{o n} / I_{o f f}>10^{6}$ for an NMOS transistor as used in an inverter. Try to keep $V_{d d}$ as small as possible. Assume 100 mV noise margin, so $V_{i h} \approx V_{d d}-100 \mathrm{mV}, V_{i l}=100 \mathrm{mV}$. This minimum $I_{o n} / I_{o f f}$ ratio should hold across the temperature range 0 C to 100 C . It might be helpful to set up an excel sheet to make the design problem easier.

