Today's Question: How do we drive a large load $(e.g. C_{load} = 4 \times 10^4 C_0)$ with minimum delay? Detail buffer count and sizing.

Assume:

- velocity saturated sizing for gate drive; inverter sizing is: $W_n=2, W_p=2$
- Start with $C_{diff} = 0$ case (for simplicity)
- 1. If we had one inverter stage to size, how should it be sized?

- (a) Write delay equation from $R_0/2$ drive through driving C_{load} .
- (b) Symbolic expression for delay-minimizing W_N .
- (c) Concrete size, W_N , for $C_{load} = 4 \times 10^4 C_0$.
- 2. If we had k inverter stages to size, how should the each be sized?

- (b) Symbolic expression for delay-minimizing W_{Ni} .
- (c) Symbolic expression for total delay using solution above.

(**Hint:** solve for γ in terms of ρ)

ρ	γ
3	
4	

Assume:

- R_u =60K Ω per 1mm length of wire; C_u =0.16pF per 1mm length of wire
- $R_{wire} = L \times R_u; C_{wire} = L \times C_u;$
- $R_0 = 25 \text{K}\Omega; C_0 = 0.01 \text{fF}$
- velocity saturated; $\gamma = C_{diff}/C_{gate} = 1$
- initial, minimum size buffer has $W_p = W_n = 1$
- 5. What is the delay of an unbuffered wire of length L=1mm driven and loaded by a minimum size buffer $(W_p = 1, W_n = 1)$? Draw the equivalent RC network and write a symbolic equation.

v	0		÷ 1
wire.			
Wire of Length	Delay (ns)	Number in 1mm	Total Delay for 1mm (ns)
1mm		1	
0.5mm		2	
0.1mm		10	
0.01mm		100	
0.001mm		1000	

6. What is the delay of a length L = 1mm, when we add N evenly spaced buffers to the wire.

7. What is the delay of a length L, when we add N evenly spaced buffers to the wire.

- Symbolic Equation:
- 8. How many buffers do we use to minimize delay?
 - Symbolic Equation:
 - Number of buffers to minimize delay on 1mm wire:
 - Delay at this buffer count:
 - Optimum segment length between buffers:
- 9. How should we size the buffers?
 - Symbolic Equation:
 W to minimize delay:
 Delay of 1mm wire at optimal buffer size: