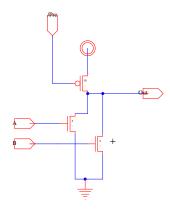

1. Below is a register built with two latches built from transmission gate muxes cascaded together controlled by non-overlapping clocks.


(a) Is this a positive or negative edge-triggered register?

Assume propagation delays are $t_{pd,inv}$ and $t_{pd,tx}$ and the inverter delay to drive \overline{clk} is 0.

- (b) What is the setup time for the register?
- (c) What is the $CLK \rightarrow Q$ propagation delay?
- (d) What is the hold time?

Assume: velocity saturated, $R_0/2$ sizing for gate drive; inverter sizing is: $W_n=W_p=2$

2. Consider:

- (a) if A=B=0 and /pre is 0, what voltage does Out hold?
- (b) if /pre switches from 0 to 1, and A=B=0, what voltage settles on Out?
- (c) if /pre is at 1 and, B switches from 0 to 1 what voltage settles on Out?
- (d) What are the sizing constraints on the NMOS devices (compare to ratioed logic)?
- (e) What concerns might we have with this logic?
- (f) What requirements must we satisfy for correct operation?

3. Determine delays. Assume $\frac{R_0}{2}$ drive on inputs, negligible clk drive, and $R_{0p}=R_{on}$. (express in τ units in terms of γ):

	Precharge	Drive Input	Drive Inv. and Self Output
CLK Out F	(pullup transistor charging inverter)		
		Input	Self Output Delay