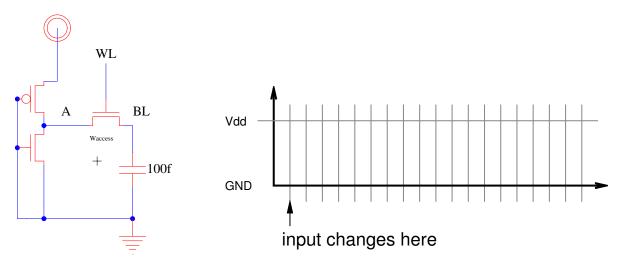
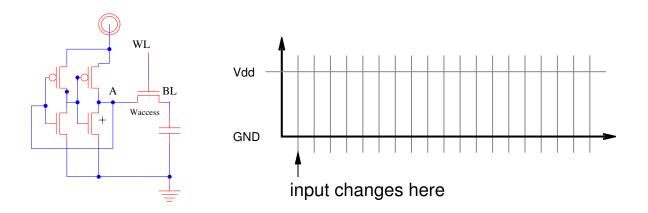

Below is the 6T SRAM cell. We will look at the operation of this cell through a read operation and then a write operation to change the bit value stored in the cell.


- 1. Assume the cell has a 1 stored ($Q = 1, \overline{Q} = 0$). During the read operation the bitlines (*BL* & \overline{BL}) are precharged high, and then the wordline (*WL*) goes high.
 - (a) Which two transistors are discharging \overline{BL} to Gnd?
 - (b) What regions of operation are the transistors in?
 - (c) Assuming the node between the two transistors has a peak voltage of ΔV , write the KCL equation for the two transistors.
- 2. Again assume the cell has a 1 stored $(Q = 1, \overline{Q} = 0)$. During the write operation the bitlines $(BL \& \overline{BL})$ are driven with the write data such that BL = 0 and $\overline{BL} = V_{dd}$, and then the wordline (WL) goes high.
 - (a) Which transistor discharges Q to Gnd?
 - (b) Which transistor must it overpower to discharge Q?
 - (c) What regions of operation are the transistors in?
 - (d) Assuming the voltage at Q is V_Q , write the KCL equation for the two transistors.

3. Initially: The switch is open and node A is charged to 1V and node B is charged to 0V.

What is the voltage at node A in steady state after the switch is closed?



4. What is the waveform on A after WL transitions from 0 to 1?

Assume BL initially at 0. How does it depend on W_{access} ?

5. What is the waveform on A after WL transitions from 0 to 1?

Assume:

- BL initially at 0
- A initially at 1

How does it depend on W_{access} ?