ESE3700: Circuit-Level Modeling, Design and Optimization for Digital Systems

Lec 19: April 15, 2024 RAM Core and Periphery

Memory

- Classification
- Architecture
- RAM Core
- Periphery
- Serial Access Memories

□ Project 2 is on this

- Precharge both bitlines high
- □ Then turn on wordline, WL
- One of the two bitlines will be pulled down by the cell
 BL

• Ex:
$$A = 0, A_b = 1$$

- BL discharges, BL' stays high
- But A bumps up slightly
- Read stability
 - A must not flip
 - N1 > N2

- Must overpower feedback inverter
- N4 >> P2

SRAM Write

- Drive one bitline high, the other low
 - Depending on write data
- □ Then turn on wordline, WL
- Bitlines overpower cell with new value

Force A_b low, then A charges high

rer cell with new

□ Some circuitry is required for each column

- Required: Bitline conditioning
 - Precharging
 - Driving input data to bitline
- Increased speed: Sense amplifiers
- Aspect ratio (square memory): Column multiplexing (AKA Column Decoders)

Charge Sharing (Preclass 1)

Initially

- A @ 1V
- **B** @ 0V
- \Box Q_A=1V*C1=C1

Charge Sharing (Preclass 1)

Initially

- A @ 1V
- B @ 0V
- $\Box Q_A = 1V * C1 = C1$
- Close switch
- $\square Q_{tot} = V_{final} * (C1 + C0)$
- Charge conservation

•
$$Q_A = Q_{tot}$$

• $C1 = V_{final} * (C1 + C0)$

- Read: What happens to voltage at A when WL turns from 0→1?
 - Assume W_{access} large
 - $W_{access} >> W_{pu} = 1$
 - BL initially 0

•
$$Q_{BL} = 0$$

• $Q_A = (1V)(\gamma 2C_0 + \gamma W_{access}C_0)$

$$\square 100 \text{fF}=C_{\text{BL}} >> C_{\text{A}} = (\gamma(2 + W_{\text{access}})C_0)$$

Voltage After enable Word Line

•
$$Q_{BL} = 0$$

• $Q_A = (1V)(\gamma 2C_0 + \gamma W_{access}C_0)$

$$\square 100 \text{fF}=C_{\text{BL}} >> C_{\text{A}} = (\gamma(2 + W_{\text{access}})C_0)$$

- □ After enable W_{access} (W_{access} large)
 - Total charge $Q_{BL} + Q_A$ unchanged
 - Charge conservation
 - Distributed over larger capacitance $\sim = C_{BL}$
 - $V_A = V_{BL} \sim = C_A / C_{BL}$

- □ What happens to voltage at A when WL turns from $0 \rightarrow 1$?
 - Assume W_{access} large
 - A initially 1
 - BL initially 0

s

Conclude: charge sharing can lead to read upset

• Charge redistribution/sharing adequate to flip state of bit

W_{access}=20

W_{access}=4

- Pre-charge bitlines to V_{dd}/2 before begin read operation
- Now charge sharing doesn't swing to opposite side of midpoint

□ Both W_{access}=20; vary BL precharge voltage

0 precharge

□ Both W_{access}=20; vary BL precharge voltage

0 precharge

V_{dd}/2 precharge

Read 1

Read 0

- □ We have considered single-ported SRAM
 - One read or one write on each cycle
- □ *Multiported* SRAM are needed for register files
- Examples:

- □ Simple dual-ported SRAM
 - Two independent single-ended reads
 - Or one differential write

- □ Simple dual-ported SRAM
 - Two independent single-ended reads
 - Or one differential write

Do two reads and one write by time multiplexing

• Read during ph1, write during ph2

- Adding more access transistors hurts read stability
- Multiported SRAM isolates reads from state node
- Single-ended bitlines save area

Penn ESE 3700 Spring 2024 - Khanna

- □ Smaller than SRAM
- Require data refresh to compensate for leakage

- No constraints on device ratios
- Reads are non-destructive
- Data stored has a V_T drop
 - When storing a 1, value at $X = V_{WWL} V_{Tn}$

Write: C_S is charged or discharged by asserting WL and BL. Read: Charge redistribution takes places between bit line and storage capacitance

$$\Delta V = V_{BL} - V_{PRE} = (V_{BIT} - V_{PRE}) \frac{C_S}{C_S + C_{BL}}$$

Voltage swing is small; typically around 250 mV.

DRAM Cell Observations

- 1T DRAM requires a sense amplifier for each bit line, due to charge redistribution read-out
- DRAM memory cells are single ended in contrast to SRAM cells
- □ The read-out of the 1T DRAM cell is destructive; read and refresh operation are necessary for correct operation
- Unlike 3T cell, 1T cell requires presence of an extra capacitance that must be explicitly included in the design
- When writing a "1" into a DRAM cell, a threshold voltage is lost. This loss can be circumvented by bootstrapping the word lines to a higher value than V_{DD}.

Memory Periphery

- Decoders
- Column Circuitry
 - Bit-line Conditioning
 - Sense Amplifiers
 - Input/Output Buffers
- Control/Timing Circuitry

- \square 2ⁿ words of 2^m bits each
- Good regularity easy to design
- Very high density if good cells are used

- \square 2ⁿ words of 2^m bits each
- Good regularity easy to design
- Very high density if good cells are used

Decoders

- \square 2ⁿ words of 2^m bits each
- Good regularity easy to design
- Very high density if good cells are used

□ $n:2^n$ decoder consists of 2^n n-input AND gates

- One needed for each row of memory
- Build AND from NAND or NOR gates

Static CMOS

• For n > 4, NAND gates become slow

Break large gates into multiple smaller gates

• For n > 4, NAND gates become slow

Break large gates into multiple smaller gates

Many of these gates are redundant

- Factor out common
 - gates into predecoder
- Saves area
- Same path effort

Row Select: Precharge NAND

Row Select: Precharge NAND

Column Circuitry

& Bit-line Conditioning

- \square 2ⁿ words of 2^m bits each
- Good regularity easy to design
- Very high density if good cells are used

- Cell size accounts for most of array size
 - Reduce cell size at expense of complexity
- □ 6T SRAM Cell
 - Used in most commercial chips
 - Data stored in cross-coupled inverters
- **Read:**
 - Precharge BL, BL'
 - Raise WL
- Write:
 - Drive data onto BL, BL'
 - Raise WL

Precharge bitlines high before read operations

Precharge bitlines high before reads

Precharge bitlines high before reads

- □ What if pre-charged to Vdd/2?
 - Pros: reduces read-upset
 - Challenge: generate Vdd/2 voltage on chip

Column Capacitance Consequence

□ Preclass 5: What is capacitance of a bitline?

• W_{access} (pass transistor size), d rows, $\gamma = C_{diff0} / C_0$

- □ Preclass 5: What is capacitance of a bitline?
 - W_{access} (pass transistor size), d rows, $\gamma = C_{\text{diff0}} / C_0$
- Preclass 6: What is the delay for the cell to drive the bitline during a read?
 - \Box W_{buf} (inverter size in cell), R₀

□ Preclass 5: What is capacitance of a bitline?

• W_{access} (pass transistor size), d rows, $\gamma = C_{diff0} / C_0$

- Preclass 6: What is the delay for the cell to drive the bitline during a read?
 - W_{buf} (inverter size in cell), R_0
- □ Preclass 7: Waccess=Wbuf=1, γ =1/2
 - □ Delay for d=32, 512?

□ Preclass 5: What is capacitance of a bitline?

• W_{access} (pass transistor size), d rows, $\gamma = C_{diff0} / C_0$

- Preclass 6: What is the delay for the cell to drive the bitline during a read?
 - W_{buf} (inverter size in cell), R_0
- **Conclude:** Can't size up cell \rightarrow driving bitline will be slow

Sense Amplifiers

- Bitlines have many cells attached
 - Ex: 32-kbit SRAM has 128 rows x 256 cols
 - 128 cells on each bitline
- **u** $t_{pd} \propto (C/I) \Delta V$
 - Even with shared diffusion contacts, 64C of diffusion capacitance (big C)
 - Discharged slowly through small transistors in each memory cell (small I)
- Sense amplifiers are triggered on small voltage swing

Penn ESE 3700 Spring 2024 - Khanna

 (ΔV)

- Differential pair requires no clock
- But always dissipates static power

- Clocked sense amp saves power
- Requires sense_clk after enough bitline swing
- □ Isolation transistors cut off large bitline capacitance

□ Preclass 8: What is capacitance of word line (row)?

- W_{access}- transistor width of column device
- w columns
- $\gamma = C_{diff0} / C_0$
- □ Preclass 9: Delay driving word line?
 - W_{wldrive} Drive inverter

Column Drivers: Memory Bank

Penn ESE 3700 Spring 2024 - Khanna

- □ Typically used for signal traveling, e.g. bus
- Ideally all devices connected to a bus should be disconnected except for active device reading or writing to bus
- Use high-impedance state to simulate disconnecting

Input	En	Ouptut
0	0	Z
1	0	Z
0	1	0
1	1	1

Memory with column decoder

Penn ESE 3700 Spring 2024 - Khanna

Penn ESE 3700 Spring 2024 - Khanna

Penn ESE 3700 Spring 2024 - Khanna

Penn ESE 3700 Spring 2024 - Khanna

Serial Access Memories

- Serial access memories do not use an address
 - Serial In Parallel Out (SIPO)
 - Parallel In Serial Out (PISO)
 - Shift Registers
 - Queues (FIFO, LIFO)

1-bit shift register reads in serial data

• After N steps, presents N-bit parallel output

• Load all N bits in parallel when shift = 0

• Then shift one bit out per cycle

- Shift registers store and delay data
- □ Simple design: cascade of registers

- □ Flip-flops aren't very area-efficient
- □ For large shift registers, keep data in SRAM instead
- Move read/write pointers to RAM rather than move data
 - Initialize read address to first entry, write to last

- *Queues* allow data to be read and written at different rates.
- □ Read and write each use their own clock, data
- Queue indicates whether it is full or empty
- Build with SRAM and read/write counters (pointers) storing read/write address

- First In First Out (FIFO)
 - Initialize read and write pointers to first element
 - Queue is EMPTY
 - On write, increment write pointer
 - If write almost catches read, Queue is FULL
 - On read, increment read pointer
 - If read catches write, Queue is EMPTY
- Last In First Out (LIFO)
 - Also called a *stack*
 - Use a single *stack pointer* for read and write

- Memory for compact state storage
- □ Minimize area of repeated cell
 - 6T/5T SRAM
 - Mulitport trade off area for function
 - 1T/3T DRAM helps but slower
- □ Share circuitry across many bits
 - Minimize area per bit \rightarrow maximize density
- □ Aggressively use:
 - Pass transistors, Ratioing
 - Precharge, Amplifiers to keep area down

- □ Homework 7
 - Come to lab 4/22 and turn in worksheet for credit
- Project 2 out now
 - Design SRAM array
 - Work in teams of up to two
 - Milestone due F 4/19
 - Will get feedback from me by M 4/22
 - Final report due Wednesday 5/1

- Prof. André DeHon (University of Pennsylvania)
 D. G. U. J. G. D. G. D. J. G. D. J.
- Prof. Jing Li (University of Pennsylvania)